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Abstract

Malware Delivery Networks (MDNs) are networks of webpages, servers, comput-

ers, and computer files that are used by cybercriminals to proliferate malicious soft-

ware (or malware) onto victim machines.

The business of malware delivery is a complex and multifaceted one that has

become increasingly profitable over the last few years. Due to the ongoing arms

race between cybercriminals and the security community, cybercriminals are con-

stantly evolving and streamlining their techniques to beat security countermeasures

and avoid disruption to their operations, such as by security researchers infiltrating

their botnet operations, or law enforcement taking down their infrastructures and

arresting those involved. So far, the research community has conducted insightful

but isolated studies into the different facets of malicious file distribution. Hence,

only a limited picture of the malicious file delivery ecosystem has been provided

thus far, leaving many questions unanswered.

Using a data-driven and interdisciplinary approach, the purpose of this research

is twofold. One, to study and measure the malicious file delivery ecosystem, bring-

ing prior research into context, and to understand precisely how these malware op-

erations respond to security and law enforcement intervention. And two, taking

into account the overlapping research efforts of the information security and crime

science communities towards preventing cybercrime, this research aims to identify

mitigation strategies and intervention points to disrupt this criminal economy more

effectively.



Impact Statement

The research conducted herein is focused on cybersecurity and cybercrime preven-

tion, particularly in relation to malware delivery and botnet operations. Several

contributions with diverse impacts are derived from this work.

First, multiple analytical methodologies are devised using big (security) data

– specifically, download metadata – to build graph representations that mirror the

real-world networks used to deliver suspicious and unwanted software on the Web.

These methodologies enable (i) in-depth cross-sectional and longitudinal analysis

of big (security) data at different granularities (e.g., infrastructure-level, operation-

level, ecosystem-level); and (ii) identification of structurally critical and stable

nodes within such graph networks, mirroring key components in malicious file

delivery infrastructures online (files, domains, IPs). These analytical methodolo-

gies and the intelligence derived from them can be used and acted upon by various

stakeholders. For example, law enforcement, security companies, and researchers

around the world may use them to identify weak points in a malware delivery or

botnet operation for effective takedown counter-operations. The source code for

these methods have been released publicly for others to use and build upon.

Second, detailed analyses are conducted which denude the structures, work-

ings, evolution, and distinct behaviours of the malicious file delivery ecosystem and

individual malware delivery operations. Many of the findings are novel, while oth-

ers confirm findings of other works and put them into a broader context. In addition,

a comprehensive survey of cybercrime research from the perspectives of informa-

tion security and environmental criminology is conducted. This study is one of

the first of its kind, generating several new insights into cybercrime analysis and



prevention techniques, and helps to establish a new, complementary research direc-

tion between information security and crime science. This study also contributes to

other academic and non-academic fields, such as the proposal of a novel concept of

cyberplace – the digital analogue of interactional environments in the real world –

being relevant to regional and geographical sciences, computer science, urban tech-

nology, and the legal sector, to name a few. The full ramifications of this concept are

yet to be realised. The knowledge generated from these analyses benefit both the

academic and non-academic communities, contributing to the body of knowledge

for teaching and further research, and providing a synthesised knowledge base for

stakeholders with an interest in cybercrime analysis and prevention, such as security

specialists, sociotechnical system designers, and public policy practitioners.

Finally, novel uses of existing frameworks for crime prevention are considered

to devise new cybercrime countermeasures. Some new, proof-of-concept counter-

measures are proposed using said frameworks. The most obvious beneficiaries of

such frameworks and proposed countermeasures are the security community and

law enforcement sector, who may begin to apply, evaluate, and refine them. How-

ever, more generally, academic and non-academic stakeholders may work together

to test and refine these proposed frameworks and proof-of-concept countermea-

sures, particularly through the use of evidence-based approaches and action research

models.
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Chapter 1

Introduction

Malware is software that is designed to carry out malicious activities on a victim’s

computer system, usually without the permission or knowledge of its owner. There

are several main types of malware, including computer viruses, trojans, droppers,

worms, and rootkits. Malware is constantly evolving in its capabilities, character-

istics, and modus operandi as cybercriminals are continually seeking new ways to

carry out their criminal activities while avoiding detection or disruption. Given that

malware activity is involved in most technical crimes, it is recognised as one of the

most severe security threats of our time.

1.1 Evolution of Malware Delivery
Malware delivery has undergone an impressive evolution since its inception in the

1980s, moving from being an amateur endeavour to a perfectly oiled criminal busi-

ness. In pursuing larger and larger populations of victims, malware authors moved

from using floppy disks as their infection vector [106] to delivering malware as

attachments in spam emails [188], enticing users into opening them with social en-

gineering [155]. Eventually, malware authors started compromising user machines

without the need of explicit user interaction, by exploiting vulnerabilities in the vic-

tim browser once it visited a malicious web page (a so-called drive-by download at-

tack [165]). This increase of sophistication in the malware delivery process evolved

side by side with miscreants developing increasingly profitable ways of monetising

their operations [136, 186, 125].



An issue with drive-by downloads is that vulnerabilities typically affect single

versions of web browsers or plugins, and vendors are constantly patching them.

This hardly reconciles with the need of cybercriminals to infect as many victims

as possible, across a variety of software configurations, and for a long period of

time. To ease the life of malware operators seeking to infect victims through drive-

by downloads, the cybercrime ecosystem came up with exploit kits (EKs) [98] –

software packages that contain exploits for multiple vulnerabilities. Exploit kits are

able to fingerprint the victim system and deliver an appropriate exploit that is able to

compromise the system [75]. Malware operators can therefore purchase an exploit

kit (or rent one as-a-service [98]) and efficiently infect victims.

In a further attempt to streamline malware delivery and lower the entry bar for

criminals wanting to undertake a career in malware, the cybercrime ecosystem in-

troduced pay-per-install (PPI) schemes [47]. In these operations, a specialised actor

sets up a network of infected computers (commonly known as a botnet [21]); the

malware on these victim computers do not perform any activity other than down-

loading additional components. Customers of PPI services can then pay their oper-

ator to install malware of their choice on a certain number of victim computers. The

widespread adoption of exploit kits and pay-per-install services has created a com-

plex underground ecosystem, in which different cybercriminal actors trade services

with each other, and each specialise in a particular step in the criminal operation.

More recently, researchers uncovered a parallel economy that shares many

traits with malware, while being largely controlled by different actors: the one of

potentially unwanted programs (PUPs) [129, 127, 200]. This category of programs

include software that is not willingly installed by users, and that typically is an

annoyance more than a direct threat to the safety of victims — examples include

adware and browser toolbars. Research showed that while malware delivery mostly

happens through drive-by downloads, PUP victims are usually tricked into installing

a downloader, or dropper, through social engineering [127]. After such a dropper is

installed, additional components are dropped through a PPI service [200].
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To complete this already variegated picture of malicious software distribution,

the cybercrime ecosystem has developed multiple techniques to make takedowns by

law enforcement and detection by security companies more difficult. Miscreants use

Fast Flux [109] techniques, in which the Internet Protocol (IP) address associated

with a certain domain is changed very quickly. Similarly, to make it difficult to

identify DNS domains involved in an illicit operation, cybercriminals use Domain

Generation Algorithms (DGAs) [27], which algorithmically changes Domain Name

System (DNS) domains constantly, allowing malicious hosts to know which domain

to contact at any time. Finally, malicious files are constantly changed to avoid easy

detection, by using techniques known as polymorphism [31], while also employing

various other anti-research techniques to fool security researchers and their analysis

environments.

1.2 Mitigating the Threat

To defend against the continuous threat presented by malware, the security com-

munity is constantly working to improve systems security: identifying and fixing

system vulnerabilities, developing more secure operating systems, discovering new

intrusion strategies used by malicious actors, and developing better detection sys-

tems to block cyber threats such as malware. However, once those systems are

breached and malware is installed onto them, the strategic focus of security must

turn to more reactive strategies. This is because these devices can be assimilated

into botnets – networks of infected computers – by having the malware establish

a communication channel with the botnet operator’s command-and-control (C&C)

servers [70]. Once assimilated, this army of bots may be weaponised to commit

further cybercrimes, such as distributed denial-of-service attacks against a target

server, or mass-encryption of the victim devices, denying access to them (especially

if they are critical infrastructure). As such, the priority for the security community

becomes effecting botnet takedown counter-operations (which are taxonomised in

Section 2.6), disinfecting the devices that were assimilated, and, if possible, ar-

resting and prosecuting the perpetrators involved. Clearly, malware delivery is the
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necessary precursor to building a botnet. However, the challenge of identifying

effective intervention points in these malicious operations remains [150].

At the same time, the security community has raised several questions over

the efficacy of botnet takedown operations [66, 79, 181, 83]. Given the complexi-

ties within the malware delivery process (and cybercriminal operations more gen-

erally), it is unsurprising that the security community has leveraged concepts and

techniques from other fields in the hope of analysing and disrupting these oper-

ations more effectively [191]. For instance, the attack tree [176] and the cyber

kill chain [114] are just two, commonly-used models to understand cyber attack

sequences. However, these models are actually underpinned by extradisciplinary

techniques and concepts, such as fault tree analysis from electronics engineering, or

the original kill chain from the military context. Likewise, several studies into cy-

bercriminal operations have uncovered the undeniable role of profit, business part-

nerships, and outsourcing in such malicious activities [201, 192, 160, 200, 127].

These studies highlight the need for the economic and business perspectives to un-

derstand cybercriminal ecosystems more profoundly and identify pressure points

in such operations. More recently, the security community has begun to consider

models and frameworks from fields such as environmental criminology, which are

used to analyse and mitigate crime in the real world [191, 139, 135, 56]. Such

fields are already interdisciplinary in nature, combining contributions from crimi-

nology, psychology, economics, geography, mathematics, and computer science to

study and control crime. These are just a few examples of extradisciplinary con-

tributions to cybersecurity, demonstrating the continued need for interdisciplinary

research and collaboration to mitigate malware delivery operations, and cybercrime

more generally.

1.3 Research Scope and Methodology

The research community has so far studied the different facets of malicious file

distribution in isolation: malware prevalence, PUP prevalence, the use of pay-

per-install schemes, etc. While these studies are very insightful in understanding
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specific phenomena, they do not provide a full view of the malicious file delivery

ecosystem, leaving many questions unanswered. E.g., what does the malicious file

delivery ecosystem look like? Are there differences between the network infras-

tructures used to download PUP and malware? And, how do these infrastructures

evolve over time? On the effects of takedown operations, how do malicious op-

erations respond to botnet takedowns? Do they subside? Or, do they move their

infrastructure elsewhere, or change their modus operandi? Furthermore, existing

studies mapping the actors in cybercriminal ecosystems are few, with none look-

ing at the file delivery ecosystem specifically, but focusing on other elements of the

cybercrime pipeline, such as spam delivery and its monetary conversion [192, 136].

Therefore, utilising a data-driven approach, the primary objective of my re-

search is to measure malicious file delivery networks comprehensively, understand-

ing their structures and how they respond to takedown initiatives. To this end, I first

conduct a measurement study of the malware and PUP delivery ecosystem on the

Web. Second, I conduct a measurement study of the evolution of specific malicious

file delivery operations that face takedown counter-operations. Both of these studies

involve processing and analysing download telemetry collected over a year.

The secondary objective of my research is to identify better approaches to dis-

rupting malware delivery networks. This is accomplished in two stages. First,

through measurement studies, I seek to devise methodologies to identify impor-

tant nodes in malware delivery networks, which may serve as effective interven-

tion points for disrupting this criminal economy. More generally, these analytical

methodologies should be applicable using data that is collected at any time. Second,

I investigate cybersecurity interventions and the processes used to derive them from

an interdisciplinary approach, i.e., from the information security perspective and

the environmental criminology one. This is to identify opportunities to synthesise

knowledge and frameworks from both fields so as to mitigate cybercriminal opera-

tions more effectively. More broadly, I not only consider the problem of malware

delivery, but other malicious activities as well (Dark market solicitation, cryptocur-

rency crime, cyber fraud, etc). In the interest of identifying new and innovative
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solutions to the malware delivery problem, this makes sense: malware delivery op-

erations regularly rely on or lead to other forms of criminal activity, such as engag-

ing malware- and crimeware-as-a-service providers on Dark markets to setup botnet

operations, or leveraging botnets to mine cryptocurrencies, operate clickjacking op-

erations, or implement spamming operations for further nefarious activities. As

such, considering mitigations for other forms of cybercrime could lend itself useful

to disrupting the complex and composite malware value chain.

1.4 Contribution

The contribution of this thesis is encapsulated within three studies, each of which

is assigned its own chapter. In the first contribution of this thesis, I conduct a mea-

surement study of the entire malicious file delivery ecosystem on the Web. This

is to put other research on isolated aspects of malware delivery into context and

answer key questions, such as what the malicious file delivery ecosystem looks

like, whether there are differences in infrastructures that deliver different types of

unwanted software, and how these infrastructures evolve over time? Using down-

load metadata provided by Symantec, a novel methodology is devised to analyse

malware delivery networks cross-sectionally (a snapshot of activity) and longitudi-

nally, and identify various weak points in these criminal operations. Furthermore,

this work provides the security community answers to key questions regarding the

structure and workings of various aspects of this malicious ecosystem.

In the second contribution of this thesis, and as a natural extension to the first,

I conduct a measurement study on the evolution of three malware delivery opera-

tions that are targeted for takedown by law enforcement and security companies.

This is to establish precisely how different malware delivery operations respond to

takedown counter-operations, what we can learn from such behaviours, and how

such knowledge can be incorporated into future takedown strategies. Through this

work, a novel methodology is devised to analyse file delivery operations longitudi-

nally and in great depth. This methodology is not limited to any specific family or

type of software, neither is it limited to small-scale studies. Furthermore, this work
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gives the security community deep insight into the different structures, dynamics,

business relationships, and behaviours of the studied malware operations – some of

which have never before been documented in security literature or industry reports.

The analysis code used for both measurement studies is publicly released for other

researchers, analysts, and practitioners to use.

In the third and final contribution of this thesis, I conduct an extensive sur-

vey of the cybercrime literature from the perspectives of information security and

environmental criminology. In this survey, I draw parallels and explicit links be-

tween cybercrime research from information security and the theories and practicies

of environmental criminology. Next, I demonstrate how security researchers and

practitioners could apply frameworks from environmental criminology to generate

cybercrime countermeasures. Using such frameworks, I propose some new cyber-

crime countermeasures as proofs-of-concept. Finally, I propose a novel concept of

cyberplace – the digital analogy to environments wherein crimes and malicious be-

haviours are committed in the real world. Devising such a concept is recognised in

the literature as necessary to facilitate the transfer of some important environmental

criminology theories and practices [139].

1.5 Thesis Structure
The rest of this thesis is structured as follows: in Chapter 2, I discuss the fun-

damental concepts, technologies, and techniques used in malware delivery and in

takedown operations. In Chapter 3, I describe the data sources used in my studies.

In Chapter 4, I present a longitudinal measurement study of the malicious file distri-

bution ecosystem. In Chapter 5, I present an evolutionary study of malware delivery

operations that suffered takedown attempts. In Chapter 6, I present a survey of cy-

bercrime literature from the information security and environmental criminology

perspectives, identifying how environmental criminology could be applied to cy-

bercrime prevention, and what further work is required. In Chapter 7, I summarise

and discuss the contributions presented in this thesis, while in Chapter 8, I give

recommendations for future work.
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Chapter 2

Fundamentals of Malware Delivery

and Related Work

The delivery of malicious files on the Internet involves two main aspects: the mali-

cious payloads themselves and the network infrastructures used by cybercriminals

to install them onto computers. This section aims to provide an overview of the

fundamentals of malware delivery. Namely, I will discuss the key concepts and rep-

resentative research in relation to malicious payloads, the types of payload delivery

techniques used by cybercriminals, and the techniques and technologies they use

to enhance network resiliency. Complex relationships and interactions arise out of

the many variables in malware delivery. As such, I will also discuss research on

the resulting dropper networks that form, and studies on measuring the actors in-

volved in cybercrime. I will then discuss work relating to botnet takedowns – the

main strategy for disrupting malware delivery networks. Finally, I will also discuss

the most recent interdisciplinary research in cybersecurity, particularly in relation

to environmental criminology.

2.1 Malicious Payloads
Previous research has identified two main types of malicious files being delivered on

the Internet: malware and potentially unwanted programs (PUPs). Recent research

has shown that malware and PUPs are different problems with separate characteris-

tics [200, 127].



2.1.1 Malware

Malware has been a rising problem for over three decades. Previous research has

focused on studying the ways in which malware obfuscates itself to avoid easy de-

tection [58, 31], such as through the use of inexpensive packer software [218]. This

technique of binary obfuscation is called polymorphism. Over the years, malware

has been used for a number of reasons: sending spam emails [188], stealing bank-

ing credentials from infected computers [186, 33], and encrypting victim data and

asking for a ransom [125], just to name a few.

Researchers have also identified a plethora of means in which malware is de-

livered: transmission through physical media [106], malicious attachments in spam

emails [188], social engineering [155] (e.g., tricking a victim into downloading the

malware from a malicious link), drive-by downloads [165] – the process of victim

browsers being exploited after visiting a malicious web page, or viewing a malicious

advertisement – or exploit kits [98] – software packages that contain exploits for di-

verse software configurations – that are hosted on compromised web content. In

recent years, however, the research community has shown that prominent malware

families are often downloaded by droppers that belong to PPI services [186, 188].

This is one of the latest distribution techniques to be developed by the cybercriminal

economy.

2.1.2 Potentially Unwanted Programs (PUPs)

Potentially unwanted programs (PUPs) are software that contain adware, spyware

and toolbars with annoying, undesirable, or undisclosed behaviours. PUPs are usu-

ally bundled with free software, or custom installers of a wanted program that the

user gives consent to download, and are installed onto a user’s machine without

giving explicit opt-out choices. In most cases, these PUP track the Internet usage

of users and display pop-up ads and advertisements on web pages that the users

visit, promoting the installation of additional questionable content, including web

browser toolbars, optimisation utilities, and other products. One worthy example

is sourceforge.net. It terminated its “DevShare” program that delivered in-
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staller bundles as part of the download that include unwanted software (e.g., Ask

Toolbar, OpenCandy adware, etc.) [7].

Recent research shows that PUP is rapidly becoming an important problem.

For example, two recent papers show that rogue browser extensions that contain

hidden functionalities are on the rise [119, 124]. One study reported that 5% of

Google users have installed browser extensions that substitute the advertisements

that they see [199]. This can be particularly dangerous as rogue ad networks can be

used to infect users with malware through drive-by download attacks [222].

PUP has risen to a new frontier of threats to users with its increasing preva-

lence in recent years. For example, researchers [199] have observed 192 deceptive

Chrome extensions impacting 14 million users and more than 5% of unique daily

Internet Protocol (IP) addresses accessing Google. Others [119] have found that ma-

licious browser extensions are capable of infecting over 50 million Chrome users,

highlighting that the extension abuse ecosystem, leveraging web traffic and user

tracking, is considerably different from the malware ecosystem. The authors then

summarised lessons from three years fighting malicious extensions and proposed

WebEval: a system that identifies them. WebEval used a blend of automated systems

and human rules leveraging features extracted from an extension’s behaviours, code

base, and developer reputation to achieve a measurable detection rate of 96.5%.

Hulk [124] is another dynamic analysis system that has been introduced to detect

malicious behaviour in browser extensions by monitoring their execution and cor-

responding network activity.

Another study [137] filtered over 26.8 million network traces observed from

dynamic malware execution, measuring and comparing the use of domains between

malware and PUPs. It confirmed that PUPs were on the rise, and that they relied

on stable Domain Name System (DNS) and IP infrastructure, with several hundred

thousand PUP samples using the same network infrastructure over a year.

Measuring PUP prevalence more generally, one study [200] provided a sys-

tematic study of PUP prevalence and its distribution through commercial pay-per-

install (PPI) services, mainly focusing on four major downloaders from Amonetize,
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InstallMonetizer, OpenCandy and Outbrowse. It was reported that commercial PPIs

drive over 60 million download attempts per week and knowingly attempt to evade

user protections (e.g., antivirus software). Another study [127] also measured PUP

prevalence and its distribution through PPI services. However, in this work, the

authors identified dominant PUP publisher names from code signing certificates.

The authors claim that the fundamental difference between malware and PUP is

the distribution mechanism. They argue that malware distribution is dominated by

silent installation through vulnerability exploitation, while PUP is installed with the

consent of the users (either consciously or unconsciously).

Understanding the relationships and relative scales between malware and PUP

plays an important role in this thesis. In particular, in Chapter 4, I devise a method-

ology to measure and compare the structures, sizes, proliferation, and lifespans of

malware and PUP delivery infrastructures on the Web that target desktop devices.

Likewise, I investigate shared distribution infrastructures between the two types of

unwanted software to uncover how commonly such arrangements exist. This is to

give the security community a deeper understanding on the workings and relation-

ships within such infrastructures, and better perspective on the relative scales of the

two unwanted software problems.

2.2 Payload Delivery Techniques
The research community has identified two main infrastructures that are used by

cybercriminals to deliver malware: exploit kits and pay-per-install services.

2.2.1 Exploit Kits

Exploit kits have been used for many years to spread malware. In a nutshell, exploit

kits collect a large number of exploits targeting many versions of operating systems,

browsers, and browser plugins to make sure that criminals can infect as many victim

computers as possible [98].

One of the earliest exploit kits is MPack, a PHP-based kit released in late

2006 [98]. The main functionality of these kits is to gather information on the

victim machine (otherwise known as “fingerprinting”), find vulnerabilities within it
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and determine the appropriate exploit, and finally deliver the exploit (e.g., drive-by

downloads) and execute the malicious payload. The process of becoming exploited

by one of these kits, in general, follows these steps: a victim visits a compromised

website, then is redirected to several intermediate servers, and finally lands on a host

with an exploit kit. The exploit kit finds a vulnerability using the information col-

lected from the victim (i.e., fingerprinting) and consequently delivers the malicious

payload.

Nowadays, exploit kits represent the state-of-the-art in automated remote-

infection technology, which have evolved with the for-profit malware ecosystem.

As such, several studies have been directed towards detecting exploit kits on the

Web. One work [197] leveraged the inherent structural patterns in Hypertext Trans-

fer Protocol (HTTP) traffic to classify exploit kit instances. The proposed system

captured these interactions in a “tree-like” form, and models the detection process

as a subtree similarity search problem. Another study [88] surveyed a wide range

of 30 real-world exploit kits and introduced the EKHUNTER system. This system

automatically detects the presence of exploit kit vulnerabilities and compromises

both the integrity of a fielded exploit kit, and even the identity of the kit operator.

A third work [98] centered around the malware installed upon a successful browser

exploit, and investigated the emergence of the exploit-as-a-service model for drive-

by browser compromise. This is achieved by analysing over 10,000 distinct bina-

ries extracted from 77,000 malicious uniform resource locators (URLs). This study

showed that 9 exploit kits, though a small number, account for 92% of the malicious

URLs in their dataset, 29% of which belong to the Blackhole exploit kit. A static

analysis system, PExy, was designed in another work [75], which extracts the set of

URL parameters and user agents from the server-side source code of an exploit kit,

and recreates all the necessary conditions to trigger all exploits from an exploit kit.

Note that PExy is limited by the availability of exploit-kit server-side source code.

Exploit kit activity is almost certainly captured in the dataset that I study as part

of this work. However, attempting to identify such activities is beyond the scope of

this thesis. This is because, as one will later find as I describe the data sources and
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analysis methodology used in Chapters 3 and 4, it is infeasible to attempt to differ-

entiate downloads from exploit kits versus downloads from other delivery vectors

using network graph and metadata analysis alone. Therefore, to incorporate exploit

kit detection into the methodologies devised in this thesis, one would likely require

the use of a parallel analysis framework (e.g., crawling and analysing sites hosting

exploit kits) or an additional source of ground truth to enrich the dataset.

2.2.2 Pay-Per-Install (PPI) Services

PPI services have existed for years. They originated as services to facilitate the dis-

tribution of advertisements, but have seen significant (malicious) changes over the

years by centering on pushing malware and spyware to unsuspecting users [188].

A typical PPI ecosystem has three main actors: a client, a service provider, and an

affiliate. A typical PPI transaction works as follows: clients (e.g., malware authors)

pay PPI service providers to have their malware installed on a number of victim

computers. These service providers either install the malware onto victim machines

directly (i.e., using their own downloaders), or employ affiliates to distribute mal-

ware to target users (i.e., buying installs from third-parties). Once malware is suc-

cessfully installed and verified by PPI clients, affiliates receive payments from the

service providers.

Given the rise in this malicious use of PPIs – both commercial PPIs used to

deliver malware among other types of software, and malicious PPIs that are specif-

ically designed for malicious activity – research has been conducted in recent years

to measure these services. One study [200] argues that PPIs can be divided into

commercial PPIs and blackmarket PPIs. Commercial PPIs need user consent to

operate while blackmarket PPIs perform silent installs on the target hosts, i.e., in-

stallations that lack the informed consent of the owner of the system. Another

study [47] provided the first large-scale measurement of blackmarket PPI services

in the wild. This is achieved by harvesting over a million client executables using

vantage points spread across 15 countries. This work found that 12 out of 20 of

the most prevalent malware families at the time employed PPI services to buy in-

fections, confirming the previous observations that cybercriminals are commonly
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using other botnets to deliver their malicious payloads. A third study [127] lever-

aged dropper graphs to build a publisher graph and identify specific publisher roles

in the ecosystem. The authors tag roles (e.g., client, service provider, and affiliate)

to each publisher by measuring the in-degree and out-degree of each cluster in the

publisher graph. That is, publishers with both high in-degree and out-degree be-

have like PPI service providers; publishers with high in-degree but low out-degree

are more likely advertisers; and publishers with low in-degree and high out-degree

are likely affiliates.

PPI infrastructures are identified regularly throughout the work conducted as

part of this thesis: first, in the measurement study of the malicious file delivery

ecosystem, where I devise a technique to estimate the number of active PPIs on

a single day by clustering connected effective second-level domains (e2LDs) and

dropper networks (Chapter 4). And, second, in the evolutionary study of malicious

delivery operations targeted for takedown, where we see the differing use of dropper

networks (a core aspect of PPIs) between three different malware operations (Chap-

ter 5). Finally, the taxonomy of countermeasures proposed for disrupting botnet and

malware operations intersect with the PPI phenomenon, particularly against botnets

that are monetised using this business model (Chapter 6).

2.3 Technologies to Enhance Network Resiliency

Cybercriminals need to make their operations resilient to takedowns. Over the

years, two main technologies were developed for this purpose: Fast Flux and do-

main generation algorithms (DGAs).

2.3.1 Fast Flux

The basic idea behind Fast Flux is to rotate between numerous IP addresses (usually

from compromised machines) associated with a single fully qualified domain name.

By constructing such a distributed proxy network on top of compromised machines,

this technique makes malware networks more resistant to discovery and disruptive

countermeasures.
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The first empirical study of Fast Flux service networks (FFSNs) [109] showed

that almost 30% of all domains advertised in spam were hosted via FFSNs. It also

introduced several parameters (e.g., the number of unique DNS address (A) records

returned in all DNS lookups, nameserver (NS) records in one single lookup, and

unique ASNs for all A records1) to distinguish FFSNs from content delivery net-

works (CDNs), and several strategies to mitigate the threats. A separate work [111]

involved the deployment of 240 sensors to understand global IP-usage patterns ex-

hibited by different types of malicious and benign domains, revealing potential

trends for botnet-based services. Based on these insights, the authors proposed a

multi-level support-vector machine (SVM) classifier to provide fine-grained classi-

fication of fast flux domains.

The task of disentangling domains using Fast Flux from those as part of CDNs

proves a difficult one, particularly without additional metadata such as DNS records.

For the purposes of the studies conducted as part of this thesis, detecting the use of

Fast Flux is deemed out of scope. However, observations where Fast Flux is likely

used by malicious delivery infrastructures are still highlighted, particularly in the

case studies analysed in Chapter 5. In any case, extending the methodologies pro-

posed in this thesis to detect Fast Flux definitively remains a worthwhile prospect.

2.3.2 Domain Generation Algorithm (DGA)
Instead of using hardcoded DNS domains, malware authors employ Domain Gen-

eration Algorithm (DGA) to generate a large number of domain names as poten-

tial rendezvous points to command and control (C&C) servers, but only a portion

of them are contacted to receive updates and/or commands. It makes security re-

searchers and law enforcement unlikely to predict the next time a malware would

receive an update and possibly sinkhole the C&C server address.

Significant research efforts have been directed towards detecting DGA do-

mains and reverse-engineering the algorithms hard-coded into malware that enable
1A DNS address (A) record indicates the IP address for a given domain, while a DNS nameserver

(NS) record indicates which DNS server is authoritative for the given domain. An Autonomous
System (AS) is a collection of connected IP routing prefixes belonging to a network or collection of
networks, and that are all managed by a single entity or organisation and share a common routing
policy. Each system is designated a unique Autonomous System Number (ASN).
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them to rendezvous with these domains. In one study [217], three metrics were pro-

posed to differentiate a set of legitimate domain names from malicious ones – infor-

mation entropy (KL-divergence), Jaccard similarity, and Levenshtein edit distance.

The study showed the relative performance of each metric in different scenarios and

concluded that the Jaccard measure performs the best in identifying algorithmically

generated domain names. In another work [27] the Pleiades system was presented:

a system to detect algorithmically generated domain names leveraging insight that

most of the DGA-generated domain queries would result in Non-Existent Domain

(NXDomain) responses, and machines from the same botnet, if employing the same

DGA algorithm, would generate similar NXDomain traffic. Employing a multi-

class version of the Alternating Decision Trees (ADT) learning algorithm, Pleiades

successfully identified twelve DGAs (6 were previously unknown) from a large In-

ternet service provider (ISP) network in 15 months. A third work [175] proposed

Phoenix: a system that differentiates DGA and non-DGA domains, and attributes

DGA domains to their respective botnets. Phoenix was evaluated on over 1.1 mil-

lion domains, correctly distinguishing 94.8% of domains and identifying the actors

behind them.

Turning to reverse-engineering research, a study [186] discussed Torpig’s

DGA algorithms in detail. It was shown that the Torpig DGA first generates a

weekly domain name (depending on the current week and year) with a list of top-

level domains (TLDs) to form potential rendezvous points. If connections to C&C

servers using these weekly domain names failed, Torpig would generate another

batch of potential rendezvous points using a daily domain name appended with sev-

eral predefined TLDs. If all of these connections failed, Torpig would fall back to

contact the domains hard-coded into its configuration file. More recently, a com-

prehensive measurement study [163] of 43 DGA-based malware families and their

variants was carried out. By reimplementing their DGA algorithms, the authors

were able to study the registration status of over 18 million DGA domains and char-

acterised the registration behaviour of botmasters and sinkholers. The authors also
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examined the effectiveness of domain mitigations and shared the full domain dataset

which resulted from their work.

Again, the detection of DGA domains is out of the scope of this thesis. This

is primarily due to the need for additional data sources (which I painfully learned

through a number of preliminary clustering experiments). However, the use of DGA

is still identified with relative certainty when observed in the case studies in Chap-

ter 5. Just like Fast Flux, I do believe that DGA detection is a viable extension of the

analysis methodologies presented in this thesis. This could be achieved either by

using additional domain metadata (DNS records, WHOIS records2), or by imple-

menting an unsupervised classifier and using DGA domains from online blacklists

as validation data, for example.

2.4 Measuring Dropper Networks
Having established the core components of malware delivery, an important task

for the research community has been measuring the diversity of delivery network

structures and complex ecosystems that arise. To this end, several big-data studies

have been carried out to understand and detect malware delivery networks at scale.

One foundational study [172] involves the large-scale analysis of 23 Windows-

based malware downloaders over several years, identifying the characteristics of

their binaries and the network infrastructures that they use (including PPI services).

This study reports that 11 of these downloaders are active for over a year, and that

20% of malware C&C servers remain operable in the long term. However, this

study stops short of measuring the interactions between different malware families

and shared distribution infrastructures.

A more recent work [130] introduced a downloader-graph abstraction, which

captures download activities on end hosts. The authors use this abstraction to ex-

plore the growth patterns of benign and malicious graphs. Several strong indicators

of malicious activity are identified, and, subsequently, a machine learning malware

detection system is built based on these insights. Building on this work, a follow-

2DNS records contain IP address and routing information for domains. WHOIS records contain
domain ownership and contact information.
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up [131] proposes Beewolf, a system which detects lockstep behaviours – a synchro-

nised shift of communications from one domain to another by multiple downloader

binaries – based on a file and source domain graph. The Beewolf system is used to

study silent delivery campaigns involving benign software, malware, and PUP, and

to assess how well it can detect suspicious activity.

Other researchers have used downloader graphs as a means for detecting ma-

licious files. For instance, one work [24] studies a global heterogeneous malware

delivery graph using both file-dropping relationships and the topology of the file

distribution networks (host names, IPs). Using this topological information and

content-agnostic features of different node types, a Bayesian label propagation ap-

proach is devised to identify malicious files. Around the same time, a separate

work [194] proposed another malicious label propagation system for heterogeneous

downloader graphs – Marmite. Using this system, the authors provide some insights

into dropping relationships between benign software, malware, and PUP.

My work in measuring the malicious file delivery ecosystem of the Web builds

on other works in this area, most of which occurred during the same time period

as my own studies. Consequently, I used similar download graph techniques to

investigate static malware delivery infrastructures more deeply, while, at the same

time, devising new techniques for analysing different delivery infrastructures and

entire operations longitudinally. As such, much of the contributions of my work is

in line with giving the security community a greater understanding of this complex

ecosystem and how various parts of it evolve over time.

2.5 Studying Malicious Actors
Another important and challenging task when studying criminal ecosystems is iden-

tifying the different actors involved in them, and mapping their relations. The stud-

ies in this area are limited, and they focus on single ecosystems instead of providing

a comprehensive view of the malicious file delivery landscape.

For example, one study [47] provided an overview of the three main actors in

the Pay-Per-Install ecosystem, which are PPI providers (or services), clients, and
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affiliates. A later study [200] identified fifteen distinct commercial PPI networks.

The authors showed that six of the fifteen PPI downloaders were merely resellers

for other PPI networks, while the rest were distributors. In another study [127],

a publisher relationship graph was built by leveraging file-dropping relationships

and file signer information. Based on in-degree/out-degree, the authors classified

publishers into PPI services, affiliates, and advertisers. Focusing on the economics

of PPI services, an even more recent study [128] uses entity graphs to capture the

network of companies and persons behind a PUP operation. This work focuses on

the structures of three Spain-based PUP PPI services, identifying the actors involved

in each operation, and estimating the (minimal) profit margins they achieve.

Other studies have attempted to map the relations between different cyber-

criminals in the spam value chain. In one work [192], a technique to fingerprint

different actors involved in the spam delivery ecosystem (email harvesters, bot-

masters, and spammers) was developed, while another [136] looked at the spam

conversion landscape, uncovering the relations between affiliate programs, Internet

service providers, and payment processors.

So far, these research efforts have not systematically studied the actors in a

complex ecosystem involving different types of malicious activity. It remains in-

triguing to answer some questions, like if different actors use different methods to

distribute malicious files? What technologies an actor may adopt to operate delivery

networks? etc. I address some of these questions in my own work, such as by es-

timating the number of active PPI services in the malicious file delivery ecosystem

in Chapter 4, or by triaging specific malware delivery operations and highlight-

ing differences in their modus operandi and business relationships in Chapter 5.

Nonetheless, the task of establishing all the different actors in the malicious file

delivery ecosystem (e.g., vertically integrated operation actors vs. PPI actors, oper-

ators of entire malware operations vs operators of separate crimeware-as-a-service

campaigns) remains an elusive challenge that is not fully addressed in this thesis.
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2.6 Botnet Takedowns

One final and important aspect of understanding malware delivery is the approaches

the security community take to mitigate this problem. Primarily, continuous innova-

tion in systems security is the first, proactive line of defence in protecting computers

and networks from malware infections. However, once that intrusion has occurred

and the malicious payloads have been delivered, the need arises to turn to more

reactive intervention strategies, of which the main type is the botnet takedown.

Botnet takedowns are counter-operations to disrupt botnet operations and the

malware delivery networks that enable their growth. Over the years, a number of

different takedown strategies have been devised and implemented by law enforce-

ment agencies (LEAs), security companies, and researchers. I summarise these as

follows:

Botnet Infiltration and Takeover. Infiltrating a botnet is no small endeavour: it

requires high technical capabilities, intelligence-gathering, and coordination [79],

particularly when dealing with botnet infrastructure controlled by equally skilled,

intelligent, and coordinated, malicious actors. Typically, such an operation firstly

involves reconnaissance or passive observation – gathering intelligence on the bot-

net by monitoring and decoding network traffic from the infected hosts. The next

stage is infiltration: running the botnet malware within a controlled environment

(i.e., a honeypot) and analysing its internal and external workings in depth as it

communicates with the rest of the malicious network. This is to acquire strate-

gic intelligence, such as the addresses of the C&C servers and the credentials re-

quired to access them. Finally, security operatives may takeover these malicious

networks, particularly by gaining access to the C&C servers and taking them down

from within. One example of such an elaborate operation relates to the Torpig bot-

net, which was infiltrated by security researchers [186].

ISP Takedown. Another takedown approach that both public (LEAs) and private

organisations (commercial companies) utilise is the ISP takedown. Such an ap-

proach entails a party approaching the ISP that hosts the malicious domain and

requesting that they take it down for legislative reasons [50] (e.g., a court order)
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or for economic reasons (e.g., otherwise other ISPs would disconnect from them).

Typically, this would lead to the malicious domains and the hosted websites be-

ing deactivated, or, in some cases, the initiating party gaining control of the mali-

cious domains from the domain registrar [133]. Unfortunately, some cybercriminals

pre-empt such strategies by specifically choosing ISPs that are known to resist law

enforcement pressure (so-called bulletproof hosting services) [25].

DNS Sinkhole. Particularly in the case where the initiating party can attain inter-

mediate control of the malicious domains (or as in the case of Torpig, register DGA

domains that are next to be contacted ahead of the criminal operators [186]), a com-

mon follow-up strategy is to point those C&C domains to honeypot servers and

sinkhole all communications intended for them from botnet hosts. This is otherwise

known as a DNS sinkhole, which simultaneously freezes such malicious operations

while exposing victim computers within the network. This is a commonly used

technique by LEAs and security companies [79].

Seizure and Arrest. Another takedown approach involves physically seizing the

malicious servers, and, if possible, arresting and prosecuting the perpetrators. Some

research has identified this to be the most effective (albeit difficult) strategy to dis-

rupt botnet operations.

Disinfection. Finally, once infected machines have been identified from one of the

above techniques, authorities may contact the victims and advise them on how to

remove the malware from their devices. Alternatively, security companies could

implement such disinfection campaigns remotely by pushing the removal code to

the devices of their clients.

The fundamental problem with botnet takedowns is that if the botnet is not

taken down fully or its operators not prosecuted, the operators may simply revive

their operations and make them more resilient, making the task of taking down the

botnet more difficult the next time round. Because of this problem, various studies

have been conducted to quantify the effects of takedowns. One study [66] exam-

ines email statistics from a medium-sized UK ISP to assess the effects of the 2008

McColo takedown on global spam volume. It found significant reductions in spam
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email volumes around the time of the takedown operation. However, it was also

found that particular types of spam detection mechanisms employed by this ISP

ceased to be as effective. A broader study [79] qualitatively analyses a set of highly

publicised botnet takedown efforts between 2009-2011. It is concluded that, while

some takedown strategies are more effective than others, the arms race between

security practitioners and cybercriminals will continue to make botnet takedowns

more expensive and difficult as cybercriminals continue to make their infrastruc-

tures more resilient. The author calls for more coordination and shared knowledge

within the security community to make takedowns more efficient and sustainable.

In an attempt to bring measurement and order to botnet takedown analy-

sis, a takedown analysis and recommendation system, rza, is proposed in another

work [150]. This system allows researchers to conduct a post-mortem analysis of

past botnet takedowns, and provide recommendations on how to execute future ones

successfully. This work is motivated with some real case studies. In a second

work [151], improvements to the rza system are proposed by enhancing its risk

formula to include botnet population counts. Two additional botnet takedowns are

also examined, and the policy ramifications of takedowns are discussed in detail

by the authors. Another work [133] also discusses regulatory and policy solutions

to botnet takedowns, particularly arguing the need for more public-private partner-

ships to achieve this endeavour. One study [181] surveys and taxonomises 19 botnet

takedown initiatives between 2008–2014 and proposed a theoretical model to assess

the likelihood of success for future botnet takedown initiatives. To the best of my

knowledge, the author is still in the process of building this database before releas-

ing it to the security community.

Investigating the effects of takedowns further, a recent historical study [83] was

conducted on the causal effects of botnet takedowns on ISPs that hosted spamming

activity. In this work, the authors build an autoregressive model for each ISP to

model wickedness – a metric defined as total spam released per ISP – as a function

of (i) external factors and (ii) each takedown that occurred as represented as a time-

lagged step-function. They find that, for most takedowns, the effect of a takedown

37



is minimal after a period of 6 weeks. However, takedowns with a seizure element

appear the most effective over the long-term. They also find evidence of a takedown

in one geographic region causing a diffusion of benefits and criminal activity into

others.

A major focus of this thesis is in devising methods to disrupt botnet and mal-

ware delivery operations. As a result, this thesis makes significant contributions

to this effect: from identifying intervention points in the malicious file delivery

ecosystem (Chapter 4); to assessing the results of prior takedowns on particular

malware delivery operations, seeing how they respond and evolve (Chapter 5); to

considering new ways to look at cybercriminal operations in general, synthesising

frameworks from other crime prevention fields, and proposing a matrix of counter-

measures against botnet and malware delivery operations (Chapter 6).

2.7 Interdisciplinary Cybercrime Research
In this section, I review the recent shift in environmental criminology research into

the digital space and cybercrime. I also briefly overview other fields of research that

share an interest in defining situational or ‘place’ contexts in cyberspace, which is a

core concept of environmental criminology theory.

2.7.1 Environmental Criminology and Cybercrime

In the last few decades, digital technology has undertaken an unprecedented rate of

growth, culminating in it becoming a rudiment of modern society. In recent years,

environmental criminologists have begun to recognise the co-dependent shift and

proliferation of criminal activities in cyberspace (i.e., cybercrime), following the

diffusion of criminal opportunity into the digital world. For almost two decades,

discussions have been ongoing on the potential (multiplying) effect that digitisation

has had on crime [97, 207]. Grabosky [97] reflects on these discussions, concluding

that, though the motivations behind crime and human nature are still the same, tech-

nology has enabled an increase and diversification in criminal opportunities through

anonymising technologies, transatlantic connectivity, and an absence of clear-cut

boundaries for potential guardianship.
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Though there has been a steady increase in studies seeking to use and evaluate

the use of environmental criminology theories to model cybercrime [135, 108, 219],

there is still a significant need for a proper synthesis of environmental criminology

knowledge and methods with cybersecurity and cybercrime prevention paradigms.

But, preceding such a synthesis, there is a more fundamental need to define sit-

uational contexts or ‘cyberplaces’ wherein crimes and other online activities are

commissioned in cyberspace, just as (according to environmental criminology the-

ory) situational contexts or ‘places’ underpin crime and other physical activities in

the real world. Prior to my work in Chapter 6, formal approaches to conceptualising

such ‘cyberplaces’ (particularly for cybercrime analysis) were almost non-existent.

With that being said, one study [139] reviewed the applicability of environmen-

tal criminology to crimes in cyberspace, particularly evaluating the virtual places

of cybercrime and how they differ to their physical counterparts. The lack of de-

velopment of a ‘cyberplace’ concept is a critical gap in this area of research, and

demonstrates the relative infancy of this new research direction.

In Chapter 6, I go much further than former studies in providing an overview

of cybercrime research from two disciplinary perspectives: information security

and environmental criminology. I draw parallels between these two understand-

ings of cybercrime, highlighting areas of overlap, and reasoning that future works

could utilise these complimentary approaches to cybercrime prevention in an holis-

tic manner. I initiate this process, first, by demonstrating how techniques from envi-

ronmental criminology could be applied to devise new cybercrime countermeasures

(particularly for disrupting botnet and malware delivery operations), and second,

by proposing a new concept of cyberplace and discussing how it may be applied in

cybercrime analysis and prevention.

Following my work, other researchers have argued a similar standpoint of the

need for an interdisciplinary approach to cybersecurity, but with a focus on ad-

dressing specific cybersecurity challenges. In one work [118], the authors argue

the need for an holistic framework to understand and reduce human-related risks

in cybersecurity and cybercrime ecosystems, drawing from a range of theoretical
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concepts (technological advancements and social adoption, opportunity manage-

ment, behavioural and business models). They report ongoing work in developing

such an holistic, co-evolutionary framework for sociotechnical ecosystems, partic-

ularly with two use cases. In another study [59], the authors propose a framework

for identifying unintended harms caused by cybersecurity countermeasures (such

as criminal displacement or misuse). They argue that this framework could enable

stakeholders in cyberphysical environments to implement countermeasures and risk

management strategies with more thorough consideration. A similar work [159]

considers how methods from opportunity reduction and behaviour change can be

used to improve the precision of cybersecurity controls – precision that is purposed

to protect legitimate users of sociotechnical systems, while simultaneously prevent-

ing malicious activities. These emerging works demonstrate increasing momentum

and contributions of fields such as environmental criminology in the cybersecurity

domain, especially regarding sociotechnical systems security.

2.7.2 Concepts of ‘Place’ in Cyberspace.

Researchers and professionals in a variety of fields have made concerted attempts

to formally establish a concept of ‘cyberplace’, or virtual location.

In the geographical sciences, Tranos and Nijkamp [203] study the impact of

physical distance on the formation of the Internet infrastructure, and whether physi-

cal distance survives in virtual geography, even after controlling for relational prox-

imities. On the other hand, in the field of urban technology, Devriendt et al. [78]

identify two approaches to analysing “virtual” or digital intercity linkages (i.e.,

linkages based on ICT). In both of these works, they utilise the same geographic

metaphors of cyber-place (CP), which is defined as the projection of the infrastruc-

tural layer of cyberspace on traditional space, and cyberspace (CS), which is defined

as the virtual or immaterial world wherein people communicate with each other via

networked technologies, and that physical laws and aspects, such as distance and

time, are practically irrelevant. My definition of cyberplace significantly differs to

that of prior works in that it derives a holistic concept of cyberplace, which takes

into account cyberspace, online activity and cybercrime, and their relationship with
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the real world. Furthermore, much like how ‘place’ in the real word can be de-

composed into three fundamental aspects [74], I define the three components of

‘cyberplace’ that encapsulates all of its characteristics. In a sense, my definition of

cyberplace combines the CP and CS metaphors.

From a sociological perspective, Wellman [209, 210] characterises computer

networks as social networks, and thus argues that they should not be studied in iso-

lation, but as integral parts of everyday life. An example of such studies includes

the work of Sussan et al. [195] on how cyberspace allows consumers to form vir-

tual communities and engage in online word-of-mouth exchanges. Wellman [210]

initially thinks of computer-to-computer interactions becoming increasingly “place-

less”. Nonetheless, in reference to the development of place-based social networks,

the author refers to “online relationships and communities” being “truly in cyber-

places, and not just cyberspaces”, potentially alluding to cyberplaces as online ser-

vices that enable peer-to-peer networking.

Significant efforts have also been made in the legal sector in isolating a licit

definition of ‘place’ in cyberspace. Hunter [113] discusses the CYBERSPACE AS

PLACE legal metaphor, which was commonly used in the U.S. to understand In-

ternet communication as “having certain spatial characteristics from our physical

world experience”, thus giving legal precedent in cases involving Internet services

and digital property. Lemley [132] argues that the Internet is dominated by publicly

accessible sites or spaces, therefore Law should not assume every part of cyberspace

is “owned” by a particular entity. The author also contradicts the CYBERSPACE

AS PLACE metaphor, mainly due to large disparities between the physical idea of

property and the cyber world. However, the author does not discuss the use of

synchronous applications, such as social networks or instant messengers (which

connect people with similar interests much in the same way as place-based relation-

ships), in relation to the CYBERSPACE AS PLACE metaphor. The author also fails to

consider individual websites as places, which may serve as better ‘place’ analogies.

Cohen and Hiller [69] discuss the legal definition of ‘place’ (U.S. Law) and attempt

to define an analogous counterpart for ‘cyberplace’ for the purposes of clarifying
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laws and rights surrounding such matters. In particular, the authors note that the

CYBERSPACE AS PLACE (or Internet as a place) metaphor is far too broad a defini-

tion, and suggest a new framework that identifies when a private provider of online

content or access creates a ‘place of public communication’. The purpose of this

framework is to disambiguate between private and public spaces on the Internet,

much like in the physical world, for conflict resolution.

42



Chapter 3

Data Sources

In this chapter, I describe the data sources that are used to study the malicious file

delivery ecosystem and specific delivery operations. I also describe the additional

sources of ground truth that I use to enrich these data.

3.1 Symantec Download Metadata
I leverage a dataset shared through a research collaboration with Symantec. This

gives me access to the fully anonymised data collected by its anti-virus and intrusion

detection/prevention products on millions of end-hosts around the world. These

datasets are collected from users who explicitly opt-in to the data sharing program,

and does not include personally identifiable information (PII).

The dataset contains download activity information from real hosts for a pe-

riod of one year between 1 October 2015 and 29 September 2016. The users that

have explicitly opted into Symantec’s data-sharing programme periodically transmit

metadata on the binaries that they download. This dataset offers rich information

regarding the time at which a binary is downloaded, from which server it is down-

loaded, and which program initialises the download activity. If a malicious file

4.exe is downloaded from a website http://avirivi.co.il/counter,

for example, the data will contain information about the file, as well as the web-

site URL from which 4.exe was downloaded, and the IP address of the server

198.252.64.124. Note that if this malicious file 4.exe downloaded other ma-

licious files, I define 4.exe as a dropper. Additionally, if a dropper malware sam-



ple downloads a second malicious file, the dataset will record information about

both the server from which the file is downloaded and the dropper that initiated the

download.

To be more precise, for each download event, the dataset contains the following

information: the timestamp of the download event, the name, SHA-2 (256 bits) and

size (in bytes) of the downloaded file, the host URL (with parameters omitted) and

IP address of the server the file was downloaded from, the SHA-2 of the parent file

which initiated the download, and the referral URL (with parameters omitted) that

this program was originally referred from (if available).

I collect data on a daily basis in October 2015 (31 days) and, from then on, ev-

ery Thursday on a weekly basis from November 2015 to September 2016 (47 days).

In total, the dataset contains 129 million download events consisting of 21,398,564

unique binaries that are categorised as either PUP or malware. These binaries are

downloaded from 12,394,454 unique URLs, hosted on 557,429 unique IPs. After

IP filtering (see Section 4.2.1.1), these are reduced to 21,388,521 unique binaries,

12,390,735 unique URLs, and 553,812 unique IPs.

It is important to note that, although this dataset is several years old at the

time of writing this thesis, the techniques derived using this dataset are timeless.

Moreover, as the security community has found, malware operations often last for

several years [128, 160]. As such, many malware that operate today were likely in

operation at the time this data was collected. Finally, as I will show in the ensuing

chapters, many malware behaviours are observed repeatedly throughout the liter-

ature. As such, the observations presented and lessons learned in this thesis will

likely recur in modern-day malware, though some permutations may exist.

3.2 Ground Truth

I utilise a variety of ground truth data to enrich the Symantec download data. This

is to establish whether files are malware or PUP, to what families they belong, and

how their dropping networks evolve over time.
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3.2.1 Symantec Reputation Scores

Symantec also employs extensive static and dynamic analysis systems to determine

the maliciousness of a binary. My work focuses on malicious file downloads. To

this end, this dataset is preprocessed to leverage the reputation score that Symantec

associates to files, discard any file that has a high (benign) reputation score, and keep

files that are involved in the delivery of malware or PUP (e.g., using the ground truth

maintained by Symantec) or confirmed as malicious by VirusTotal [116]. These

reputation scores also serve as additional ground truth for unlabelled files. Note

that I consider a file to be malicious if at least one of the top five AV vendors by

market share (in no particular order, Avast, AVG, Avira, Microsoft, and Symantec)

and a minimum of two other AVs detect it as malicious. A similar technique has

been used in other work [154, 194].

3.2.2 VirusTotal

VirusTotal [10] is a free online service that analyses submitted files and URLs across

different antivirus engines and website scanners, aggregating these scan outputs. I

query VirusTotal with each file SHA-2 to obtain the number of AV products that

flag the file as malicious, as well as the AV-specific malware or PUP family labels

designated to it.

Ecosystem study. For the measurement study in Chapter 4, I only collect Virus-

Total data for download events occurring on October 1st, November 12th and 19th,

and December 17th and 24th, 2015. This is because VirusTotal limits queries at a

rate of 4 requests/minute for non-paying users. This throttling limited the amount

of ground truth that could be collected for this study within a reasonable time pe-

riod. Of course, however, workarounds to this limitation exists if adequate resources

(time, funds) are available.

Takedown study. Coupled with throttling limitations, VirusTotal can sometimes

take several months (or even years) to detect and classify some malicious files in

the wild accurately [137, 130, 162]. As such, for the longitudinal study of malware

delivery operations that faced takedown attempts in Chapter 5, I collect and anal-

yse VirusTotal data for the remaining download events in 2015-16 approximately 3
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years after first being observed (i.e., in 2019). This makes sense since, given the

retrospective nature of this study, I seek to characterise the evolution of different

malware and PUP operations as accurately as possible.

3.2.3 AVClass
In conjunction with VirusTotal, I utilise the AVClass malware labelling tool [177]

to remove “noisy” and conflicting malware labels for a given sample so as

to determine a correct and consistent one. For example, multiple AV en-

gines may generate labels of Adware.Rotator.F, Adware.Generic, and

Adware.Adrotator.Gen!Pac for a single SHA-2 of the AdRotator PUP

family. AVClass processes these VirusTotal labels to generate the AdRotator

family label of the PUP software class for this same SHA-2. At times, a single

family may be associated to file SHA-2s that are labelled as both PUP and malware.

Therefore, I use majority voting on each family to label it and its associated SHA-2s

as either PUP or malware.

Ecosystem study. I used the default AVClass family labels for the study in Chap-

ter 4, given that the tool was developed around the same time the download data

was observed.

Takedown study. I utilised an updated set of AVClass family labels1 at the time of

the study in Chapter 5.

3.2.4 National Software Reference Library
NSRL provides SHA-1 and SHA-2 hashes of known benign and reputable pro-

grams. I use NSRL’s Reference Data Set (RDS) version 2.67 to identify benign

files that are potentially involved in malicious file delivery.

In total, the ground truth dataset contains 1,034,763 malicious file SHA-2s

(4.83% of all files), 443,541 (2.07%) of which is classified as malware, and the

remainder as PUP. On the other hand, 350,517 SHA-2s (1.64%) are known to be

benign, as either VirusTotal flags them as not malicious (349,746 files), and/or the

NSRL maintains that they are reputable (9,007 files). Finally, the lack of ground

1Commit 21806f3 from https://github.com/malicialab/avclass (July 27th,
2018)
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truth for the remaining 20,003,241 SHA-2s (93.5%) leave their relative benignity

or malice unknown.

It is worth pointing out the issue of lack of ground truth is a common problem

within the security community, mainly because of software polymorphism [31] and

singleton binaries [138]. However, one must be clear that the primary focus of

these studies is understanding the structures of malicious file delivery operations,

how known operations respond to different mitigation strategies, and identifying

pinch points within them. These studies do not aim to classify unlabelled files or

solve the “ground truth problem.”

3.3 Additional Data Sources
I enrich the dataset even further to establish ground truth on the network hosts that

deliver the malicious files. This allows us to characterise upstream delivery net-

works with clarity and track how their use by malware and PUP operators evolve

over time and in response to different mitigation strategies.

3.3.1 IP–ASN Mappings
I leverage a dataset of IP address to Autonomous System Number (ASN) mappings

that was provided by Cambridge Computer Laboratory, University of Cambridge.

This data was collected daily between October 1st, 2015 and September 29th, 2016.

I extend my gratitude to Dr. Richard Clayton for this dataset.

3.3.2 Geolocation Data
To further characterise the locations of different delivery service providers (partic-

ularly in the takedown study in Chapter 5), I leverage a geolocation dataset to map

IP addresses to the countries in which the servers are hosted. To achieve this, I use

the python-geoip PyPI package2, and MaxMind GeoLite2 data3 collected

around the time of the study.

In particular, there are datasets that were collected on 20151027 and

20161203. I found that for 98.3% of IPs in the Symantec dataset, the two Ge-

2
https://pypi.org/project/python-geoip/

3
https://dev.maxmind.com/geoip/geoip2/geolite2/
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oLite2 datasets recorded the same geographic locations. This was unsurprising, as

prior research has shown that most IP-geolocation structures are stable for static

devices (servers, routers, desktops) [208]. Given the identical mappings between

the two datasets, I opted to use the 20161203 GeoLite2 dataset for the study.

3.3.3 Mozilla Public Suffix List
The Public Suffix List is a cross-vendor initiative to provide an accurate list of

domain suffixes. This list includes common CDN resources as suffixes (e.g.,

ca-central-1.amazonaws.com). I used the Mozilla Public Suffix List4 to

identify the effective second-level domains (e2LDs) in this dataset for clustering

purposes. The list is editable, so I included amazonaws.com as a suffix to sepa-

rate different users of its services (e.g., clients of Amazon AWS cloud services).

4
https://publicsuffix.org/
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Chapter 4

Measuring the Malicious File

Delivery Ecosystem on the Web

In this chapter, I present my first experimental study: measuring the malicious file

distribution ecosystem. This work was in collaboration with Symantec Research

Labs, who collected and provided the download metadata from millions of their

product users, as well as my doctoral supervisors, who both gave invaluable insights

and direction over its many iterations. We published an ACM AsiaCCS conference

paper based on this chapter titled, ‘Waves of Malice: A Longitudinal Measurement

of the Malicious File Delivery Ecosystem on the Web.’ The analysis code is publicly

available on GitHub.1

4.1 Introduction
Malware delivery has become a major business in the cybercriminal economy.

Through decades of evolution and refinement, cybercriminals have developed en-

tire operations around delivering malicious payloads to end-users at scale, whether

the payloads be proprietary (i.e., controlled by the same actor who delivers it) or

third-party (i.e., controlled by a different actor to the one who delivers it).

There are myriad techniques cybercriminals use to deliver malware: transmis-

sion through physical media, social engineering (e.g., tricking a victim into down-

loading the malware from a malicious link or email attachment), drive-by down-

1
https://github.com/ColinIfe/mdn

https://github.com/ColinIfe/mdn


loads and exploit kits hosted on compromised websites, and malicious advertise-

ments (or malvertisements).

Over time, the cybercriminal economy developed the pay-per-install (PPI) ser-

vice model, which is characterised by cybercriminals paying for their malware to

be installed onto end-user devices by the PPI network operator or by one of the

operator’s affiliate distributors. A core proponent of the PPI business model is the

dropper, which is software designed specifically to download other software com-

ponents onto victim devices.

As described in Section 1.1, researchers have recently uncovered a parallel

economy of potentially unwanted programs (PUPs) [129, 127, 200], which share

many traits with malware. Examples of this type of unwanted software include ad-

ware, spyware, and shady browser toolbars. Research has shown that PUP victims

are usually tricked into installing a downloader, or dropper, through social engi-

neering [127]. After such a dropper is installed, additional components are dropped

through a PPI service [200].

Previous research has suggested that, although mostly disjoint, a consistent

number of malicious actors (e.g., PPI operators) serve both malware and PUP sam-

ples. Kwon et al. [131] show that 36.7% of the droppers that they observed down-

loaded both malware and PUPs. Despite this finding, many questions remain unan-

swered on the structure, workings, and dynamics of malware delivery networks.

What does the malicious file delivery network look like? Are there differences

in the network structure of infrastructures that solely download malware, PUP, or

both? How do these infrastructures change over time? Answers to such questions

could help the security community better understand this malicious ecosystem, and

could expose weak points in these infrastructures for takedowns.

In this study, I adopt a data-driven approach to provide a longitudinal char-

acterisation of the malware and PUP delivery ecosystem on the Internet. First,

I process 129 million download events collected from millions of real users who

downloaded unwanted software over one year. This data contains information on

the files downloaded, on the network servers that they were downloaded from, and
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on the dropper file that initiated the download. I subsequently model these down-

load relations as a graph and apply graph analysis techniques to identify the related

network and file components. I then look at the types of files that these components

download, and study their temporal behavioural characteristics over a short period

(one day), as well as over a medium period (every day for a period of one month)

and the long term (one day a week for a period of one year).

Overview of results. I show that the malicious file delivery landscape can be par-

titioned into two disjoint ecosystems: a tightly connected set of network infrastruc-

tures that are mostly responsible for downloading PUPs, and a set of isolated infras-

tructures that are mostly responsible for downloading malware. I also show that the

PUP Ecosystem is stable over the long-term (i.e., one year). In raw numbers, the

PUP Ecosystem is responsible for 80% of suspicious file downloads worldwide. Al-

though previous research found that PUPs are pervasive in the wild [127], this work

presents the first comparison of the prevalence of PUP and malware. I estimate the

proportion of PUP-to-malware in the wild – roughly 5:1 in # of SHA-2s, and 17:2

in # of downloads – and analyse the characteristics and distribution patterns of their

ecosystems. Confirming results from previous work [131], I show that these deliv-

ery infrastructures are often not responsible for delivering a single type of malicious

file (i.e., PUP or malware), but, instead, often deliver both. I observe the activity

patterns of distribution infrastructures over time and their lifespans. This study pro-

vides the security community with an unprecedented view of the characteristics of

the malware and PUP delivery ecosystems. Also, I provide a methodology, with

initial results, that identifies elements (IP addresses, autonomous systems, domain

names) in a delivery infrastructure that do not change over time. These can be used

to direct takedown efforts towards those elements that are not volatile and therefore

could have an impact if taken down.
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4.2 Methodology

This study leverages two stages of analysis: (i) a 24-hour snapshot analysis, and

(ii) a longitudinal analysis. In the first stage, I group related hosts and files ob-

served over 24 hours, and map the network infrastructures involved in the delivery

of malicious files. In the second stage, I track the evolution and behaviours of these

infrastructures. In this section, I describe these stages in detail.

4.2.1 Snapshot Analysis

The data processing pipeline for a 24-hour snapshot is as follows: i) IP filtering, ii)

building the graph, iii) separating components, and iv) file classification.

4.2.1.1 IP filtering

Since this dataset presents a global outlook on download data, files that appear to

be generated from the host machine (localhost) or private IP addresses could be

incorrectly inferred as being part of the same infrastructure. Consequently, IPv4/v6

addresses that are not valid for public use on the Internet [6] are removed. As a

result, the graph-building stage ignores files/URLs that are only downloaded from /

hosted on these IP addresses.

4.2.1.2 Building the graph

I build a directed graph for each observation window (24 hours), defining a graph

as

G = (V,E) (4.1)

where V is a set of heterogeneous nodes that represent the following entities: IP

addresses, URLs, and files. E is a set of directed edges that represent relationships

between each node. Note that in this study, URLs that share a common fully qual-

ified domain name (FQDN) are clustered together rather than explicitly defining

them as nodes within the graph. It should be noted that, in a similar manner to the

approaches used by other researchers [194, 24], I update this methodology in Chap-

ter 5 to represent FQDNs as graph nodes explicitly, so as to identify URL-to-FQDN
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relationships from the outset. For simplicity, I have outlined the additional steps in

this chapter to avoid repetition later.

An example of a download graph is shown in Figure 4.1, which captures both

the file dropping behaviours (client-side) and the upstream distribution network

(server-side). To build the download graph, I take download events as the input,

where each download event is represented as a tuple

d =< I,D,Ur, ...,Uf ,Ff ,A f ,Up,Fp > (4.2)

where I is the IP address from which the file was downloaded, D is its FQDN (Chap-

ter 5 only), Uf is the host URL of the download (after removing the URL parame-

ters), while Ff is the downloaded file identified by its SHA-2. A f represents a set of

attributes which provides additional information about file Ff , such as its filename,

its size (in bytes), and the “reputation” and “prevalence” scores assigned to these

files by Symantec’s static and dynamic analysis systems (see Section 3.2.1). In-

formation on any HTTP redirection chains that are involved in the download event

is also included, terminating with the download URL Uf . If the download event

takes advantage of redirection, this initiating referrer URL, Ur, would be recorded.

I use this information because, as previous research has shown, malware operators

utilise redirections to make their infrastructures more resilient and difficult to de-

tect [193]. Finally, information about the parent file that initiated the download

event is retained, which may be as a result of a user-triggered download from a le-

gitimate program, such as a browser or an installer, or a malware sample dropping

other malware, such as through a pay-per-install scheme [47]. Fp represents this

parent file as identified by its SHA-2, whereas Up indicates the URL from which

this parent file was downloaded.

The following steps are then taken to build the graph with a download event d:

• For each element de in the tuple d, I check if de already has a node in the

graph. If it does not, I create a new node with a unique identifier and add it to

the set of nodes V . I use the full IP address as an identifier for IP nodes, the
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File1
SHA-2: …

Parent file
SHA-2:…

Referrer URL: 
http://landing.page/path

Host URL :
http://parent.file.com/path

Host URL: 
http://download.file.com/path/

IP1

File2
SHA-2: …

IP2

download
event 1

download
event 2

Figure 4.1: An example of a download graph with two series of download events high-
lighted. This schema is used for this study, while an updated schema is adopted
for a later study in Section 5.3.1.

FQDN for FQDN nodes (Chapter 5 only), the full URL without parameters

for URL nodes, and the SHA-2 hash for file nodes.

• If there is no pre-existing edge between any two elements de1 and de2 in d,

I create an edge with weight 1 and add it to the set of edges E. If the edge

already exists, its weight is incremented by 1. The following directed edge

relationships are permitted between each node type (as represented by each

element de), subject to their presence in the download event d:

– FQDN dD ! URL dU (Chapter 5 only),

– download IP dI ! download URL dU f ,

– download URL dU f ! referrer URL dUr,

– in decreasing order of precedence, subject to presence in the download

event: (i) referrer URL dUr, (ii) download URL dU f , or (iii) download

IP dI ! downloaded file dF f (or parent file dF p),

– parent file (dropper) dF p ! downloaded file dF f .

Take download event 1 in Figure 4.1, for example: File1 is dropped by Parent

file, which was downloaded from host URL http://parent.file.com/path,

hosted on IP address IP1. In download event 2, File2 was downloaded from host
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URL http://download.file.com/path/ hosted on IP2. These two dis-

connected graphs are connected by the third download event where File1 was

downloaded via referrer URL http://landing.page/path leading to host

URL http://download.file.com/path/.

4.2.1.3 Separating components

The primary step towards attributing files, hosts, and their activities to actors is

to separate the directed download graph into weakly (undirected) connected com-

ponents. This enables me to identify distribution networks of files and hosts that

have direct interactions with each other, and characterise them as independent struc-

tures for a given 24-hour period. The graph structure is divided into file-only and

network-only (sub)components, which are the connected components derived from

the file-only and network-only sub-graphs. I define (i) a network infrastructure as a

component in the network-only subgraph, while in the case of a file-only subgraph,

(ii) a file infrastructure as a component consisting of at least two file nodes, and (iii)

a lone file as an isolated node in this subgraph. For example, Figure 4.1 shows two

network infrastructures, {IP1, HostURL} and {IP2, HostURL, ReferrerURL}, one

file infrastructure, {ParentFile, File1}, and a lone file, {File2}. This separation into

sub-graphs assists in the task of attributing infrastructures to independent actors and

tracking these over time.

4.2.1.4 File classification

To further understand the malicious file delivery ecosystem, I am interested in la-

beling graph components as “malware,” “PUP,” or “unclassified,” based on the most

common types of files of which they consist. VirusTotal [10] is a freely accessible

site that analyses file submissions across dozens of antivirus engines and produces

detailed reports and detection statistics. Amongst these statistics are the family la-

bels by which each antivirus engine classifies the file (e.g., a prominent malware or

PUP family).

Simple majority voting could be applied to all labels produced in a VirusTotal

report. However, an issue with this approach is that antivirus vendors use incon-

sistent labels for positive samples, even when the same malware families are de-
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tected. For example, two engines may generate labels of Adware.Rotator.F

and Adware.Adrotator.Gen!Pac for the same instance of the AdRotator

PUP family. These inconsistencies lead to unreliable majority votes. As a result,

Sebastian et al. [177] designed and evaluated the AVClass malware labeling tool to

overcome this problem.

In this study, the AVClass tool is used to label each file SHA-2 that generates

a VirusTotal response with a family name, and as likely malware or PUP. Each

graph component is then assigned a malware, PUP, or unclassified label, based on

a majority vote on the most common family it distributes. If VirusTotal classifies

a sample as malicious, but AVClass does not contain its label in its database of

aliases, I label it as a singleton cluster named after its SHA-2.

4.2.2 Longitudinal Analysis

After mapping the actors involved in malicious file delivery over one day, we want

to understand how stable these distribution infrastructures are over time. To this

end, file-only and network-only components are tracked on a daily and weekly basis

(working from the same day of the week) over an entire year. I also track the

lifespans of these infrastructures over a year, using a weekly sampling frame, with

respect to the first day of the dataset. More precisely, I do the following:

4.2.2.1 Snapshot processing

For each day of data, I generate file-only and network-only connected components.

To achieve this, I repeat the steps from Snapshot Analysis in Section 4.2.1 to build

components from the overall graphs. I also generate file-only and network-only

sub-graphs and build components from these.

4.2.2.2 Optimal signature selection

To track distribution infrastructures across different days, I need to first characterise

each graph component with a signature: a set of nodes within these components

which are likely to be temporally stable. Therefore, I need to determine (i) a good

criterion for node stability, and (ii) a suitable signature length. The following ex-

periments are conducted to establish suitable signature characteristics:
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(1) Node centralities. I pursue a suitable criterion for identifying stable nodes

through graph percolation, i.e., the breaking down of a graph component by system-

atically removing nodes. Graph percolation [49] is useful in showing how resilient

a network is to disruption, and by what method. I utilise different node centralities

as the criteria for selecting the node to be removed at each iteration, with the idea

that stable ‘root’ and ‘branch’ nodes (e.g., IP addresses, hosts, droppers) are likely

to be more “influential” than ephemeral ‘leaf’ nodes (i.e., end-user downloads). In

this case, I use node centralities as proxies for “influence.” I then conduct graph

percolation on a graph component, via centrality criteria, until it completely disin-

tegrates. I compare the rates of graph percolation under different node centralities

and select the one with the highest rate.

(2) Sensitivity analysis. Besides identifying the ranking metric of the nodes most

likely to be stable, I also need to determine a suitable number of nodes to include

in the tracking signature when I attempt to trace infrastructures across days. In-

tuitively, it is unlikely that I would need to consider every single node in a given

infrastructure in this matching process. To this end, I conduct a sensitivity analysis

using the node selection criterion as well as a range of signature lengths as I measure

the number of infrastructures that I can track across a pair of days. I then select a

maximum signature length based on the principle of diminishing returns, i.e., when

the increase in tracking accuracy is insignificant in comparison to the increase in

signature length. I present the results of these experiments in Section 4.3.2.2.

4.2.2.3 Component tracking

I have defined how I generate the signature of each component. Now, I explain how

I track these in time.

For any pair of consecutive days, i.e., day i and day i+7, I generate a bipartite

graph: a vertex set Vi, representing components from day i, and a vertex set Vi+7,

representing components from day i+7. Each component is represented as a single

vertex, v, with an associated component signature, s. For example, component vi, j

represents the jth component from day i and has signature si, j.

57



Edges represent matches between component signatures when their intersec-

tion is a non-empty set (i.e., si, j \ si+7,k 6= /0). This representation enables us to

generate a simplified, one-to-one mapping of matched components via the follow-

ing rules (in order of priority):

1. If vi, j and vi+7,k share an edge, and they have no other incident edges, I retain

this edge as a simple transition.

2. If vi, j shares edges with multiple vertices from Vi+7, the “best match” is cho-

sen (see below).

3. If vi+7,k shares edges with multiple vertices from Vi, the “best match” is cho-

sen.

The “best match” algorithm works as follows:

1. Retain edge with the smallest difference in component size.

2. If multiple edges retained, retain edge with the greatest overlap of leaf nodes

between components (i.e., the same payloads).

3. If multiple edges retained still, retain one of the edges by random.

Forward-facing transitions are prioritised over backward-facing ones, trading-off

a little tracking reliability for simplicity. The “best match” algorithm assumes that

there is more stability in how many files a dropper distributes over which files it dis-

tributes. This assumption is supported by the observation that malware can undergo

rapid polymorphism [31]. Note that this tracking technique is also limited in that

it oversimplifies the splitting or joining of infrastructures across days as straight-

forward transitions. Nonetheless, this is sufficient in estimating the activities and

lifespans of these delivery infrastructures, giving lower bounds for such.

In Section 4.3.2, I provide the longitudinal analysis of the data, particularly

focusing on the retention rates of components over time. This aspect is indeed in-

teresting to understand how ephemeral malicious file operations are and to better

understand which mitigation techniques are more promising against these phenom-

ena.
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Figure 4.2: Illustration of file distribution infrastructures. White triangles represent IP ad-
dresses; white circles download and redirection URLs; and black squares files.

4.3 Analysis

As explained in the previous section, the analysis is in two stages: first, I look at a

single day of data, to better understand the network and file infrastructures involved

in the malicious file delivery landscape. I then look at multiple days, to see how

the network and file infrastructures evolve over time. In this section, I illustrate the

results of this analysis in detail.

4.3.1 Snapshot Analysis

I build the graph for the first day of the collection period, 1st October 2015. After

the pre-filtering operations described in Section 4.2.1.1, I obtain a graph G with

1,661,636 nodes and 1,930,648 edges. These nodes consist of 964,998 file nodes

(SHA-2s), 385,861 host URL and 218,530 referrer URL nodes (130,630 domains),

and 92,247 IP nodes. Each file node represents all download events relating to

a unique file, identified by its SHA-2, with a total of 1,644,906 download events
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Table 4.1: Top 10 countries by # of GC articulation IP nodes.

Region Art. IP nodes Region Art. IP nodes

United States 1419 Russian Federation 39
China 268 Canada 31

Netherlands 147 United Kingdom 31
France 114 Luxembourg 28

Germany 53 Brazil 26

Figure 4.3: Decay of the GC by graph per-
colation under different selec-
tion criteria. N.B. line order
follows graph legend.

Figure 4.4: Giant Component degree distri-
bution (complementary cumu-
lative distribution function).

recorded for the first day. The graph is separated into weakly connected components

(see Section 4.2.1.2). Consequently, 58,173 connected components are generated.

I find that a Giant Component (GC) emerges, which accounts for 80% of down-

load activity, comprising of 786,240 unique files (1,345,586 download events) dis-

tributed through 89,550 domains, 480,110 URLs, and 51,436 IP addresses. The GC

comprises network components and file components interconnected with each other,

such as multiple network infrastructures dropping the same set of files. To put this

into perspective, the next largest non-Giant component consists of only 2,000 nodes.

The remainder of download activity (which I refer to as the Non-Giant Component

or NGC) is attributed to 58,172 independent distribution infrastructures. Figure 4.2

shows an illustration of the two emergent download ecosystems.

4.3.1.1 Graph structural characteristics

It is pertinent to verify whether the GC identified is indeed a well-connected set

of network infrastructures, or if it is an artifact of the methodology. To this end,
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I conduct graph percolation as described in Section 4.2.2.2, shown in Figure 4.3.

I find that the GC is tightly connected to a minority of nodes. For instance, it is

required to remove over 1k (0.08%) of the highest degree nodes to reduce the size

of the GC by more than 50%, and at least 6k (0.46%) nodes – 5.5k of which are

network nodes – to reduce the size by 80%. This ratio is an extreme example of

the Pareto principle, which itself states that for many real-world outcomes, roughly

80% of effects come from 20% of causes.

Following from the graph percolation experiment, I identify the articulation

nodes which form the structural backbone of the GC. Table 4.1 shows that, when I

focus on IP addresses, the United States is the biggest regional contributor to this

massive distribution infrastructure. This ranking could indicate where ISP take-

down efforts would be most effective in dealing with unwanted software distribu-

tion, notwithstanding the potentially disproportionate number of ISPs located in the

US. The GC is an approximate scale-free network: Figure 4.4 shows its degree dis-

tribution approximately following a power-law distribution. It contains 1.3M nodes

and 1.6M edges. The diameter of the GC is 20, meaning that there are only 20 hops

along the longest chain of IPs, URLs, and dropped files. The average path length of

the GC is 6.20 (average number of hops between any pair of nodes). The GC also

has a global clustering coefficient of 3.6⇥ 10�5. This property could be an indi-

cation of a tree-like structure for the GC, with a relatively small number of highly

interconnected root nodes, but many branches and leaf nodes. This conclusion is

supported by the fact that only a very small proportion of nodes – most of which

are hosts – are responsible for the connectivity of most of the GC.

4.3.1.2 Significance of the GC

Though initial findings showed that the GC is a well-connected ecosystem of files

and network infrastructures, this component could still be an artifact of, for exam-

ple, the shared use of IP addresses by different malicious operations due to their

use of popular hosting providers and content distribution networks (CDNs). This

classification would result in a false connection of services that are effectively in-

dependent in the real world, e.g., separately owned Amazon EC2 instances being
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linked to the same IPs and/or domains. To rule out these scenarios, I conduct two

experiments: first, I rebuild the graph without IP addresses, and second, I blacklist

the most popular effective second-level domains (e2LDs). I use the Mozilla Public

Suffix List2 to identify the e2LDs in this dataset. Note that this list includes com-

mon CDN resources as suffixes (e.g., ca-central-1.amazonaws.com). I

included amazonaws.com as a suffix to separate users of its services.

For these verification experiments, the graph G is rebuilt without any IP ad-

dress nodes, or any URLs with IP addresses in place of domain names (e.g.,

http://119.147.227.164/path/to/file). This results in a graph of

1,544,062 nodes (7% reduction) and 1,578,585 edges (18% reduction). After com-

puting the weakly connected graph components, I find that the GC is considerably

smaller, but remains stable, with 908,029 nodes (31% reduction) and 1,102,300

edges (32% reduction). Evidently, IP addresses help form a significant part of the

GC, connecting about 31% of this component. In real terms, shared IPs connect a

significant proportion of the unwanted software distribution market – potentially an

indication of shared or repeated use of network infrastructure, or these services be-

ing illicit, thus not appearing on the public suffix list. However, these results show

that there is also a strong interconnection between distribution services through

URL-to-URL redirections between hosts, the distribution of multiple software per

service (one-to-many) and and the distribution of common software between multi-

ple services (many-to-one).

Next, the most popular e2LDs are categorised by grouping the network nodes

(hosts and referrals) that share the same e2LD and rank them by the number of

associated network nodes. Table 4.2 shows the top 20 e2LDs. I find that the

top GC domains predominantly belong to popular CDNs, such as MediaFire (7.4k

nodes), Windows Azure (under msecnd.net, 6.4k nodes), Softonic (2.7k nodes),

and Google (2k nodes). An apparent zz-download-zz CDN is also very prominent,

consisting of 2.86% (7.6k nodes) of hosts. As later results suggest, the unwanted

2The Public Suffix List is a cross-vendor initiative to provide an accurate list of domain suffixes
– https://publicsuffix.org/
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Rank e2LD % of hosts Rank e2LD % of hosts

1 mediafire.com 2.80% 11 d3s8yh4ki1ad1i.cloudfront.net 0.67%
2 msecnd.net 2.40% 12 drp.su 0.64%
3 uploaded.net 1.70% 13 crusharcade.com 0.62%
4 magnodnw.com 1.56% 14 doff.info 0.58%
5 mysimplefile.com 1.03% 15 4shared.com 0.53%
6 softonic.com 1.00% 16 zz-download-zz8.com 0.51%
7 clipconverter.cc 0.84% 17 zz-download-zz10.com 0.50%
8 google.com 0.77% 18 zz-download-zz7.com 0.49%
9 file8desktop.com 0.73% 19 mountspace.com 0.47%

10 up1004.info 0.72% 20 zz-download-zz9.com 0.48%

Table 4.2: Top second-level domains ranked by # of GC network nodes.
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Figure 4.5: Decay of the GC (no IPs) by removal of top e2LDs.

software distribution economy may be leveraging, if not directly using, the infras-

tructures of benign and popular CDNs.

Figure 4.5 exhibits the exponential decay of the GC as the top e2LDs are re-

moved in order of decreasing rank. I find that the GC structure remains resilient to

percolation, even after the total removal of all 30,330 e2LDs in the GC. This result

shows that both IP addresses and popular domains are important for the connec-

tivity of the GC, but there is still a strong and resilient interconnectivity between

the files that are distributed within it, as evidenced by 20% of the GC (180k nodes)

remaining after removing all domains and IPs. That is, droppers also contribute

significantly to the proliferation of unwanted software and are core to the malicious

file delivery ecosystem. Taking into account that the smallest estimate of the GC is

still 90 times the size of the largest non-GC infrastructure (2k nodes), this evidence

strongly suggests the real-world presence of the GC structure in the malicious soft-
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ware delivery ecosystem, regardless of potential measurement artifacts. Moving

forward, I proceed to study the differences between the GC and NGC infrastruc-

tures.

4.3.1.3 File distribution of the GC and NGC

After identifying the presence of two distinct groups of infrastructures, the GC and

the NGC (composed of 58k independent infrastructures), I aim to better understand

what kinds of files are installed as part of the two ecosystems. The file classifica-

tion process as described in Section 4.2.1.4 is applied. Of the 965k unique files

downloaded in this day of data, VirusTotal generates analysis reports for only 80k

file SHA-2s. AVClass [177] then processes the VirusTotal results to produce 61k

family labels: 42k are from known families, while 19k are from unclassified fam-

ilies, which are labeled as “singletons” (see File Classification in Section 4.2.1.4).

The remaining 19k of SHA-2s analysed by VirusTotal had not been classified as

malicious at the time the download metadata was collected.

The attrition in ground-truth data is undesirable but expected. Only a small

proportion of files are actually submitted to VirusTotal for analysis, hence the con-

siderably small record size compared to the total number of files. Of the files for

which VirusTotal has analysis records, some attain no AV detections, hence lead-

ing to AVClass producing no family labels for these SHA-2s. Even for files that

have been detected as potentially malicious, some of them are only given generic

labels by the AV vendors that detect them (e.g., Trojan.Dropper.Gen). These

generic labels are stripped away by AVClass, leaving only family-specific labels,

or, when none such labels exist, singleton SHA-2 labels for unclassified families.

Because of this attrition in ground-truth, I instead use the available AVClass labels

to characterise clusters of files that exhibit dropping behaviours. In particular, I

use a majority voting scheme to label each file-only graph component with its most

common family, as well as whether it is likely ‘malware,’ ‘PUP,’ or ‘unclassified.’

This estimation helps to characterise the remaining unlabelled but related files.

Figure 4.6 shows various family distributions for the GC and NGC ecosystems.

A key finding here is that there is a clear difference in the presence of unwanted
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Figure 4.6: Malware/PUP family distributions. From left to right, figures show: i) top fam-
ilies by # of raw downloads; ii) top droppers by # of known families dropped;
and iii) top known families dropped. The top row is for the Giant Component,
while the bottom row is for Non-Giant Components.

software within these two ecosystems: the GC is primarily dominated by PUP,

while the NGC is dominated by malware distribution activities. For the GC, PUP

such as convertad, amonetize, and opencandy conduct the lion’s share of

download activity. Similarly, these families act as prominent droppers, installing

other malicious files on infected computers, though there is also a considerable

malware presence, particularly with the zusy family. In the NGC infrastructures,

gamarue, for example, is very prolfic in both downloads and dropping activities,

as are other malware families. It is worth nothing that extcrome is labeled as

malware, while this family is actually adware and should, therefore, be classified as

PUP [1]. This is a false positive result of AVClass, highlighting the imperfection

of the AVClass labeller, although such misclassifications are generally rare in this

dataset.
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Another interesting observation is in the mixed presence of PUP and malware

droppers and payloads within the GC. Given that the GC is a single, networked

download infrastructure, this alludes to a mixed distribution mechanism for PUP

and malware, although it is still PUP-dominated. By majority voting on the most

common family for a given file component (see Section 4.2.1.4), I estimate that

the numbers of independent PUP and malware file delivery operations (i.e., file

components) in the GC are roughly 1.5k and 360, respectively (3.2k unclassified),

and for the NGC, 190 and 250, respectively (2.9k unclassified). Note that I do

not consider lone files as file delivery operations (i.e., singleton file components

that do not engage in any dropping activities). 82 (1% of) file delivery operations

involve both PUP and malware, which is in alignment with the findings of Kotzias

et al. [127] that refer to PUP distribution and malware distribution being largely

disjoint. However, I find that a single, massive file delivery operation that is a subset

of the GC involves both PUP and malware, and is responsible for the distribution of

61k SHA-2s (7.7% of the GC) and 394k raw downloads (29% of the GC). This is

in line with the work by Kwon et al. [130], who found that 36.7% of the droppers

that they observed were downloading both malware and PUPs. To provide context,

the next largest delivery infrastructure in the dataset only distributes 2k SHA-2s.

I also compute estimates of the proportions of PUP-to-malware in the wild

by identifying SHA-2s of known families, and whether they are likely malware

or PUP. In the overall graph G, the PUP-to-malware ratios are roughly 5:1 (SHA-

2s) and 17:2 (raw downloads). The proportions of PUP-to-malware in the GC are

roughly 8:1 in # of SHA-2s and 11:1 in # of raw downloads . In the NGC, the PUP-

to-malware ratios are 1:1.78 in # of SHA-2s and 1:2.15 in # of raw downloads.

Despite previous work already highlighting that PUP is more predominant in the

wild than previously thought [127], this study was the first to quantify the ratio of

malware and PUP in the wild.

4.3.1.4 Case study: Opencandy operation

Figure 4.7 shows the known families dropped by the prevalent opencandy PUP,

a commercial and popular pay-per-install (PPI) software, in this 24-hour snapshot.
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Figure 4.7: Known families dropped by Opencandy. Note that unknown families are omit-
ted from this diagram.

This figure indicates that PUP-malware relationships and mixed distribution infras-

tructures may be a bigger problem than first thought. Opencandy seems to drop

malware and PUP by similar proportions: 26 malware families (63 file SHA-2s) ver-

sus 37 PUP families (132 file SHA-2s), excluding the 288 Opencandy self-dropped

SHA-2s. It is also interesting to see the dropping behaviours of this PPI. In particu-

lar, some of its customers include other installer software such as convertad and

installmonetizer. This could be evidence of business-to-business relation-

ships and shared distribution infrastructures between these competing PPI brands.

Opencandy also directly drops instances of its own binaries. I find that the

longest chain of Opencandy dropping its own binaries is a length of 2 sequen-

tial drops. For instance, a drop-chain of Opencandy binaries (same SHA-2) have

the file names PowerISO5 X64.exe, ADV 35.EXE, and spstub[1].exe.

PowerISO5 X64.exe is the brand name of a CD/DVD image processing tool,

while spstub[1].exe is the name of software developed by Conduit, most often

with the description “Search Protect by Conduit”. This could simply be the result

of affiliate tracking. However, given that Opencandy has been found to distribute

malware, one cannot completely rule out the possibility of foul play in the use of

this mechanism.
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Summarising this section, I discovered two file delivery ecosystems. The GC

consists of interconnected file and network infrastructures and mostly drops PUP,

while the NGC is composed of independent components and mostly drops mal-

ware. Because of the GC predominantly dropping PUP and the NGC mostly being

responsible for malware downloads, for the remainder of this chapter, I can refer to

the GC as the PUP Ecosystem and the NGC as the Malware Ecosystem.

Figure 4.8: Structural comparison of PUP and Malware Ecosystems.

4.3.1.5 Network and file characteristics of the two ecosystems

Figure 4.8 shows a structural comparison of the PUP Ecosystem and Malware

Ecosystem sub-graphs. The file in-degree and out-degree distributions for the PUP

and Malware Ecosystems are very similar. This could be indicative of largely sim-

ilar distribution patterns being employed by malware and PUP authors, e.g., the

common use of PPI services. However, the PUP Ecosystem generally has higher

in-degree and out-degree distributions for network nodes. This result suggests sev-

eral notions. First, hosts in the PUP Ecosystem are typically more interconnected

(i.e., redirections between hosts) and/or utilise more IPs than hosts in the Malware

Ecosystem. Also, hosts in the PUP Ecosystem are likely to be more prolific distrib-
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utors (e.g., CDNs) than in the Malware Ecosystem, as also shown in the long-tails.

This is likely due to the larger volume of traffic that these services can attract.

The file SHA-2s dropped per domain distribution shows that domains in the

Malware Ecosystem download significantly fewer unique files onto victim systems

than those in the PUP Ecosystem. However, the actual number of raw files down-

loaded by PUP domains is only slightly more. There are several possible expla-

nations for this. Sites hosting malware could be used by malware authors to only

distribute their own binaries, or by illegitimate PPI infrastructures that serve fewer

malware customers per domain. The malware sites could also be distributing a

few file SHA-2s before changing domain names in order to evade detection. On

the other hand, while many of the sites in the PUP Ecosystem may be CDNs that

are accessed explicitly by users to download different types of software (hence its

larger distribution of SHA-2s), more of the malware-hosting sites could be benign

sites that are compromised and unknowingly hosting exploit kits. In this case, vic-

tims would be infected without consent through silent drive-by downloads (hence

the fewer SHA-2s distributed by Malware Ecosystem domains).

Over 98% of SHA-2s are lone files, as shown by the file component distribu-

tions. Lone files do not engage in any file dropping activities, nor are they dropped

by any other file SHA-2 – they are observed to be downloaded only directly from

hosts. Though component sizes vary, a majority of file components in both the PUP

and Malware Ecosystems have diameters and average path lengths between 0 and 2

(>99.9% for both), although the file component sizes, diameters, and average path

lengths in the Malware Ecosystem are slightly larger in general. This explains the

very low clustering coefficient of the PUP Ecosystem (GC) and supports the notion

that downloader graphs are generally very sparse and tree-like, with the Malware

Ecosystem having similar, albeit unconnected, distribution patterns.

4.3.1.6 Evasion tactics

The distribution of IP addresses per domain provides an interesting result. While

there is evidence of over 90% of domains having only one IP address each, far more

IPs per domain are used by a significant proportion of the PUP Ecosystem than the
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AS No. Organisation Region Network Infrastructures
Hosted

16509 Amazon.com Inc. US 2901
15169 Google Inc. US 2508
14618 Amazon.com Inc. US 1425
16276 OVH SAS FR 1289
4134 China Telecom CN 999

13335 CloudFlare Inc. US 788
20940 Akamai Technologies EU 755
24940 Hetzner Online DE 600
4837 China Unicom CN 567

26496 GoDaddy.com LLC US 563

Table 4.3: Top 10 autonomous systems by # of network infrastructures hosted (i.e., con-
nected components from network-only graph).

Malware Ecosystem. The high usage of IPs per domain in the PUP Ecosystem could

be evidence of increased use of the fast flux technique in this ecosystem. However,

this could also be attributable to the significant presence of various CDNs in this

ecosystem, which has already been confirmed in previous sections.

Rossow et al. [172] state that rather than using servers with fast flux, some

pay-per-install operators opt to distribute their dropper malware through multiple

servers, each hosted on a different autonomous system (AS). Figure 4.9 shows the

distributions of IPs and ASes being used to serve droppers. As I will show, there

are fundamental differences in the dropping modus operandi between large portions

of the PUP and Malware Ecosystems. While only less than 10% of droppers in the

Malware Ecosystem are distributed across more than one IP or AS, over 70% of

droppers in the PUP Ecosystem are distributed across more than one IP address,

while over 45% are distributed across more than one AS, indicating the use of the

aforementioned distribution tactic [172]. Servers with this abundance of resources

are very likely to be constituents of CDNs. In fact, many of these malicious network

infrastructures appear to congregate on well-known ASes, as shown in Table 4.3.

Note that a single network distribution infrastructure may operate across multiple

ASes.
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Figure 4.9: Distribution of IP addresses/autonomous systems serving each dropper. Drop-
pers with no traceable IPs or ASes are omitted.

4.3.1.7 PPI estimation

I also estimate the number of Pay-per-Install (PPI) services active during this single

day. I define a PPI service as a network-only component that directly drops more

than one type of malware or PUP family. I only consider known families, as the

families of files with singleton AVClass labels could not be determined. I also ag-

gregate network components with common e2LDs as they would represent common

services. As a result, I estimate a potential lower bound of 215 PPIs operating in

the PUP Ecosystem and 179 PPIs operating in the Malware Ecosystem. I note that

the largest “PPIs” in the PUP Ecosystem and Malware Ecosystem involve about

99% and 24% of all e2LDs and IP addresses in their respective ecosystems. In real

terms, this could further indicate that PPIs, as we know them, are more highly con-

nected than once thought, either through shared use of infrastructure or from one

service reselling to another. Note that other inter-host relationships (such as web

links between pages) are not considered.

Finding such a high level of connectivity once again raises the question:

why does the GC exist? Other works suggest that many different companies en-

gage in unwanted software distribution and that it is unlikely that they are in

close collaboration. However, arguably, this data suggests otherwise. It is pos-

sible that different affiliates are distributing the same binaries, or that software

authors are running the same auction systems, leading to the downloads of these
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same binaries. For instance, at least 4% of file SHA-2s in the GC are dis-

tributed by more than one host. Alternative hypotheses are that multiple com-

panies that distribute unwanted software are actually controlled by a single com-

pany and/or many CDNs are acting as resellers unto other resellers, and so on.

For example, a particular network infrastructure consists of 2 IPs and 30 differ-

ent e2LDs, including downloadopencloud.com, opencloudsafe.com,

setupfreesoftware.com, and thesafedownload.com, and, within the

data, most major CDNs are structurally connected in one way or the other. Nonethe-

less, we can confidently rule out malware delivery mostly being a set of vertically

integrated operations. Instead, it is either one big organised operation, or, perhaps

more likely, a well-connected marketplace of infrastructure providers.

4.3.1.8 Summary of results

In this 24-hour snapshot analysis, I showed that the malicious file delivery landscape

could be partitioned into two disjoint ecosystems: a tightly connected ecosystem

that is mostly responsible for downloading PUP, and a set of isolated infrastruc-

tures that are mostly responsible for downloading malware. I showed that the PUP

Ecosystem is responsible for 80% of the total number of suspicious file downloads

worldwide. I reckon that it is likely a well-connected marketplace of infrastructure

providers. I calculated the ratio of malware and PUP appearing in the wild, and

showed that PUP dominates malware by a ratio of 17:2 in the number of files down-

loaded worldwide. I compared the structures and distribution techniques of the two

ecosystems, showing that PUP operators are more likely to distribute the delivery

of their malicious files across more IP addresses and autonomous systems. I also

showed that IPs from the U.S. are core to the PUP Ecosystem, which could be the

most effective target for ISP takedowns. Using this technique, one could go further

in identifying the most stable of these IPs over the collection period, such that those

that are purely illicit are targeted for ISP takedowns, while the benign ones (e.g.,

CDNs) are advised to improve their security practices.
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Maximum Signature Length Day-Pair 1 Day-Pair 2

1 32.5% 38.1%
blog2(X)c 41.1% 46.7%

2 46.5% 51.7%
3 48.0% 53.6%
4 48.2% 53.7%
5 48.2% 53.8%
10 48.3% 53.8%
20 48.3% 53.9%
50 48.3% 53.9%

100 48.3% 53.9%

Table 4.4: Sensitivity analysis. blog2(X)c is the variable length signature with the size
being the rounded-down logarithm of the component size X .

4.3.2 Longitudinal Analysis

So far, I have looked at the malicious file delivery ecosystem over 24 hours. How-

ever, many questions remain unanswered on how such delivery ecosystems evolve.

Therefore, in this section, I analyse the temporal evolution of file delivery networks,

particularly focusing on the retention rates of infrastructure.

4.3.2.1 PUP Ecosystem persistence

First, a graph is built for each day. As a result, the PUP Ecosystem (i.e., Giant

Component) was found to be stable over the entire year. This result is important, as

prior work [127, 131] only characterises PUP and malware ecosystems in the short-

term. As described in Section 4.2.2.1, the network-only and file-only components

from the overall graph are then computed, which represent the network-based and

file-based delivery infrastructures.

4.3.2.2 Infrastructure tracking

It is important to develop robust signatures to track infrastructures in time. As

such, a graph percolation experiment was conducted to measure how quickly the

GC breaks down using a number of graph influence measures, i.e., eigenvector,

betweenness, in-degree, out-degree, and overall degree centralities (see Figure 4.3).

Following this experiment, I select out-degree as the criteria to select influential

nodes for infrastructure signatures (see Section 4.2.2.2). In practice, degree and out-
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degree perform identically, but out-degree is selected as it is more computationally

efficient in that it does not include (redundant) leaf nodes in the tracking signature.

I conduct a sensitivity analysis of tracking performances with different maxi-

mum signature lengths. Here, I select infrastructures from two randomly selected

pairs of consecutive days in the data series (i.e., Day-Pair 1: 2015-Oct-22 and 2015-

Oct-29, and Day-Pair 2: 2016-Feb-02 and 2016-Feb-09). A match is defined as an

intersection of a pair of signatures across two days. I then compute the percentage

of component signatures matched across these day-pairs using different signature

lengths. Finally, by diminishing returns, I select a maximum signature length of 5

(see Table 4.4).

This result means that a graph component can be characterised by up to

five of its top out-degree nodes. An example of a network component signa-

ture is {‘http://groupsetzipmyjob(dot)org/hp/’, ‘107.21.97.98’, ‘54.225.102.164’,

‘68.232.34.200’, ‘74.120.16.179’}. Besides making tracking computationally fea-

sible, this also points out elements (e.g., IP addresses, DNS domains) that are stable

over time and could, therefore, constitute potential intervention points by law en-

forcement agencies (LEAs) and security companies (e.g., for takedowns).

In the tracking analyses, I only consider file clusters that exhibit dropping be-

haviour as file (client-side) distribution infrastructures. The retention rates of the

remaining lone files is considered separately as these are less easily attributable

to individual actors. I also track infrastructures using two temporal granularities:

daily (over a month) and weekly (same weekday sampled over a year). This ap-

proach allows us to observe in detail the delivery network life-cycles in both the

medium-term and the long-term trends.

4.3.2.3 Retention of infrastructures

Figure 4.10 shows the daily retention of network and file delivery infrastructures,

i.e., the number of infrastructures that are detected from one day to the next. The

daily retention reveals cyclicity in the network and file distribution infrastructures,

both that are active in download activity (total) and that are tracked, with a cyclic pe-

riod of seven days. As 1st October 2015 was a Thursday, the results show that more
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Figure 4.10: Daily retention of delivery in-
frastructures over a month.

Figure 4.11: Daily retention of lone file
SHA-2s over a month.

distribution infrastructures are active across weekdays (i.e., Mon-Tue, Tue-Wed,

Wed-Thu, and Thu-Fri) and less across weekends (i.e., Fri-Sat, Sat-Sun, Sun-Mon).

The cyclic download activities during the week could show that the file distribution

patterns of cybercriminals and legitimate providers alike mirror the network use,

download, and work-rest patterns of people and organisations. In other words, in-

fections increase during business hours because more potential victims have their

computers on, as already observed by previous work [70, 186, 188]. Routine Activ-

ities Theory [68] supports this notion, which posits that (cyber)criminals can only

engage in criminal activities when they converge in (cyber)space and time with suit-

able targets in the absence of capable guardians (or cyber defences).

Figure 4.11 shows the daily retention for lone files. A lone file is a file that is

dropped directly from network hosts and does not engage in any further dropping

behaviour. On the other hand, I defined a file (client-side) distribution infrastruc-

ture as a file-only component that exhibits dropping behaviour between files. In

comparison with the retention of file infrastructures (Figure 4.10), the fluctuations

in the presence of lone files (Figure 4.11) and network infrastructures (Figure 4.10)

appear more pronounced. This is probably due to there being many more network

infrastructures and lone files than file infrastructures, e.g., lone files constitute 98%

of file-components in the first graph snapshot. It should be noted that the weekly

fluctuation in the total and tracked network infrastructures may not specifically rep-

resent hosts going down or coming up: it only means that the sensors used in this

dataset do not observe downloads from these hosts.
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Figure 4.12: Weekly retention of delivery in-
frastructures over a year.

Figure 4.13: Lifespan of delivery infras-
tructures tracked from 1st
October 2015.

Figure 4.14: Box plots showing the lifespan of file delivery infrastructures.

As shown in Figure 4.12, the weekly retention of delivery infrastructures (sam-

pled every Thursday for a year), omits this weekly periodicity. However, there is a

large drop in download activity from 19th November 2015 until 14th January 2016,

with a small peak in activity on the week of 17th to 24th December 2015. I later

investigate this anomaly (see Section 4.3.2.5).

4.3.2.4 Lifespan of infrastructures

Figure 4.13 is the lifespan plot of distribution infrastructures observed since the

first day of analysis (1st October 2015), with a weekly granularity. This figure

shows the activity decay of these infrastructures over a year. That is, infrastructures

observed on each sampled day are matched with infrastructures observed on 1st

October 2015, where the sampling frame is seven days. I initially track 40.6k net-

work infrastructures and 3.2k file infrastructures and find that, of these, at least 30k

network infrastructures (75%) remain active for over 6 weeks, while 10.5k network

infrastructures (26%) and 320 file infrastructures (10%) remain active for a year.
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There is also a several-week dip in activity starting some time between 12th and

19th November 2015. However, the rise in tracked infrastructures between 17th

and 24th December 2015 indicates the re-emergence of some of the network and

file infrastructure activity that was lost. This volatility in network and file delivery

infrastructure activity could be the result of these infrastructures going in and out

of service (e.g., server take-downs, technical faults, cessation of activities, new ac-

tors entering the ecosystem). However, this could also be hosts utilizing fast flux

or DGA and/or prolific droppers undergoing polymorphism. An additional mea-

surement was conducted on the stability of delivery infrastructure in Appendix A.1,

indicating an even smaller proportion of nodes being stable during the whole year.

Figure 4.14 shows the lifespan of file delivery infrastructures that drop only

PUP, only malware, or both. I identify and track 344 confirmed malware-only de-

livery infrastructures, 805 PUP-only ones, and 50 infrastructures that deliver both

PUP and malware. As shown in the figure, client-side (not network-level) deliv-

ery operations involving malware appear to be longer-lasting than PUP ones, i.e.,

mawlware file-dropping networks are active for a median of 5 weeks vs. 3 weeks

for PUP. This could be due to the possibility that malware is stealthier in their in-

stallation and operation on a victim computer, and/or more resilient to removal than

PUP. Mixed operations involving both PUP and malware appear to be the most en-

during. However, the validity of this result is questionable as this class has a small

sample size.

4.3.2.5 Case study: Dyre and the anomalous drop in activity

A large drop in download activity occurs between 12th and 19th November 2015.

Symantec [196] report the virtual cessation of activities of the cybercriminal group

that controlled the Dyre financial fraud trojan, following a Russian law enforce-

ment operation in November 2015. In particular, they report an abrupt halt in Dyre-

related email spam campaigns from 18th November. Symantec also confirm the

drop of its associated malware, such as the upatre dropper family, which is the

dropper malware that is installed onto victim computers (often by victims down-

loading malicious email attachments) before downloading the Dyre trojan.
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Using the AVClass labels of files observed on 12th and 19th November, I cor-

relate the changes in the presence of malware and PUP families with this event. I

do not observe any dyre family labels within this period, but interestingly, I ob-

serve significant drops in the presence of other families. I find a significant drop

in upatre – 44 out of its 99 SHA-2s cease in activity. However, most interest-

ingly, the largest disappearances are in the popular PPI droppers: amonetize

(�595 SHA-2s), installcore (�374 SHA-2s), eorezo (�266 SHA-2s), and

convertad (�214 SHA-2s). I also find a drop in the neshta malware (�223

SHA-2s) These changes are significant, seeing as there was only a total of 8k file

SHA-2s with known family labels the week just before the drop in activity.

I repeat the same difference analysis of observed families across the period of

17th and 24th December. I discover a recovery of some sorts of amonetize (+445

SHA-2s), as well as an order of magnitude smaller increase in some of the other

popular PUP families: opencandy (+58 SHA-2s), and eorezo (+47 SHA-2s).

However, 5 upatre dropper SHA-2s disappear during this period, with only a

remainder of 36 SHA-2s being observed.

Though there is evidence of a significant drop in the presence of the Upatre

dropper over this period (which could have been as a result of the reported law

enforcement operation against the Dyre operation), the coinciding drop in activity

of prevalent PUP and popular PPIs, such as Amonetize and others, during this same

period is interesting. Perhaps these PPI services were patrons to the Dyre gang.

Alternatively, perhaps there was some shared network infrastructure (such as ISPs)

which hosted the services that distributed these two types of unwanted software.

Global drop in download activity. Investigating this phenomenon a little further, it

was found that (i) the drop in download activity was felt across all categories of soft-

ware (Figures 4.15 and 4.16), and (ii) the download activities of certain groups of

domains were affected more than others (Figure 4.17) – for example, .ru domains

suffered a less significant drop in activity than .com domains. Why this occurs is

not known. However, contrary to some of the insights drawn from the Dyre case

study above, this finding presents confounding evidence against any special links
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Figure 4.15: Overall numbers of file nodes and network nodes observed over a year.
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Figure 4.16: Download metrics of different classes of software over a year.

between the Dyre-Upatre operation and other unwanted software (Amonetize, In-

stallcore, etc), seeing as many other software families experienced similar drops in

activity. This indicates the need for further research to understand this anomalous

global drop in activity and the complex dynamics between the software families

involved.
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4.3.2.6 Summary of results

In this longitudinal analysis, I showed that the PUP Ecosystem is stable in the long-

term. I showed periodic download patterns over a week, perhaps in accordance

with the Routine Activities Theory from criminology [68]. I also show that network

infrastructures tend to be quite short-lived, where 75% survive for over 6 weeks,

while 26% survive for over a year. Finally, a case study was presented on a global

drop of download activity across a wide array of software brands and families, but

coincided with a takedown operation against the Dyre malware. Though it is posited

that there could be common distribution backbones between malware, such as Dyre,

and popular PUP PPIs, such as Amonetize, the finding that many other families also

experience a coincident drop in activity during this period throws this hypothesis

into question. This indicates the need for further research into this phenomenon.

4.4 Discussion
In this study, I presented a data-driven analysis of the delivery of malicious files

on the Web. These findings shed some light on malware and PUP operations more

comprehensively than previous work. In this section, I take a step back and rea-

son over what these findings mean, and how they could be applied for mitigation

purposes. I then highlight some limitations to this study.

4.4.1 Implications of Findings

I found two largely disjoint ecosystems: one responsible for the delivery of PUP,

and one dedicated to installing malware on victim computers. I discover that the ma-

licious file delivery ecosystem makes considerable use of CDNs, which can make

takedown operations difficult. On the other hand, I identified ASes in which ma-

licious network infrastructures congregate. This result is consistent with previous

research [190] and suggests that ISP-based interventions can still be a valid method

to disrupt malware operations. In this study, I considered a methodology to identify

network elements (DNS domains, IP addresses) that do not change over time. This

methodology could be further developed to identify optimal intervention points that

LEAs could target to perform disruption, solving the fundamental problem of iden-
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tifying the right elements to target when performing takedowns, as highlighted by

previous work [150]. Other future works include repeatability experiments with

other (open-source) datasets, and identifying more real-world stimuli (e.g., ISP

takedowns) and MDN adaptations within the data.

4.4.2 Limitations

As mentioned, this data-driven analysis has limitations. By applying graph analysis

techniques to the download graph, I obtain a proxy to what is happening on the

victim computers. The type of analysis that I perform allows me to characterise

the operation of PUP and malware delivery networks, but one cannot be certain

about some of the details of malware operations that go beyond the study data. For

example, by looking at the dropping behaviour of hosts, one may estimate whether

they belong to exploit kit infrastructures or not. However, one cannot observe the

actual vulnerabilities being exploited on the host as part of a drive-by download

attack. For this reason, it could be that some of the infrastructures that one considers

exploit kits are just relying on social engineering. In a similar sense, one cannot see

auxiliary connections between hosts, such as direct web links.

I identify files using their SHA-2 (256 bits) hash function. This allows me to

reliably distinguish between unique files, e.g., variants of the same malware family,

or to identify the same file in the wild under different guises, e.g., a malware binary

using different file names. However, this method of identification still presents

complications for packed files. Packing alters the SHA-2 of a file and so the same

binary that is re-packed multiple times would appear as different unique files. This

may manifest in the graph as a host or dropper delivering multiple files when they

are actually repacked versions of the same file binary. This raises the need for some

additional file clustering techniques.

As an additional limitation, some of the analysis relies on third-party informa-

tion such as VirusTotal and the AVClass tool. This information, however, is not

perfect (e.g., some false positive indications), and, as I have shown, is often incom-

plete. For this reason, some of the file components that I identified may have been

misclassified. I focus my analysis on files with known families. This helps to miti-
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gate false positive indications from VirusTotal, as each binary in this dataset that is

assigned a family name by AVClass has at least 2 different AV engines agreeing on

the associated malware/PUP family. This classification excludes AV engines that

may also assign positive indications, but are not taken into account by AVClass due

to them only assigning a generic family name.

4.5 Conclusion
In this study, I presented the first comprehensive data-driven analysis of malicious

file distribution on the Web. I showed that there are two disjoint ecosystems re-

sponsible for the delivery of PUP and malware, respectively, and that the PUP

ecosystem is particularly stable over the long-term. Studying the characteristics

of these ecosystems in detail, together with their temporal dynamics, I showed that

the PUP ecosystem is responsible for 80% of suspicious downloads worldwide. I

estimated the ratios of PUP-to-malware in the wild to be 17:2 and differentiated

the modus operandi of file distribution between the two ecosystems. I also tracked

these distribution infrastructures over a year, finding that 75% of malicious network

infrastructures survive for over six weeks, while 26% survive for over a year. These

findings help researchers gain a better understanding of this ecosystem, and allow

us to identify promising routes for more effective mitigation against the distribution

of malicious software. For instance, a methodology was devised to identify those

elements in a delivery infrastructure that change slowly over time. In future work,

one could explore the possibility of using such elements (IP addresses, autonomous

systems, domain Names) for performing effective takedown operations.
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Chapter 5

Tracing the Evolution of Malware

Delivery Operations Targeted for

Takedown

In this chapter, I present my second experimental study, which is an extension of

the measurement study presented in the previous chapter. However, the focus of this

study is to analyse the behavioural dynamics of three malware delivery operations

after law enforcement attempted takedowns against them. This work was in col-

laboration with Symantec Research Labs. We published a RAID conference paper

based on this chapter titled, ‘Marked for Disruption: Tracing the Evolution of Mal-

ware Delivery Operations Targeted for Takedown.’ The analysis code is publicly

available on GitHub.1

5.1 Introduction
Malware delivery has evolved into a major business for the cybercriminal economy

and a complex problem for the security community. The botnet – a network of

malware-infected devices that is controlled by a single actor through one or more

command and control (C&C) servers – is one phenomenon that has benefited from

the malware delivery revolution. Diverse distribution vectors have enabled such

malicious networks to expand more quickly and efficiently than ever before. Once

1
https://github.com/ColinIfe/mdn

https://github.com/ColinIfe/mdn


established, these botnets can be leveraged to commit a wide array of secondary

computer crimes, such as data theft, financial fraud, coercion (ransomware), send-

ing spam messages, distributed denial of service (DDoS) attacks, and unauthorised

cryptocurrency mining [192, 188, 2, 33, 22]. Even worse, these botnets could be

further monetised as pay-per-install services [47], allowing the botnet controller to

rent out access of their network to other criminals and their malware.

As described in Section 1.1, cybercriminals have devised numerous evasive

techniques to avoid detection and make their malware operations more resilient.

For example, on the software level, polymorphism is one technique that is used to

beat antivirus detection engines, where malware constantly changes its identifiable

features to make each binary appear different from one another [31]. On the network

level and to avoid detection of their malicious servers, cybercriminals may employ

Fast Flux – the rapid changing of the public IP address of a given server [109].

Alternatively, they may use domain generation algorithms (DGAs) – hard-coded

algorithms in the malware that enable them to alternate between the C&C domains

with which they communicate [27]. Furthermore, cybercriminals have been known

to use distributed server architectures, having servers hosted in multiple geographic

regions and across different autonomous systems. This could be a tactic to avoid

detection (i.e., delivering malware from different sources) [172] or to ensure there

is redundant infrastructure available in the event of a takedown [137].

As I outlined in Section 1.2, law enforcement agencies (LEAs), security com-

panies, and researchers are constantly seeking methods, opportunities, and inter-

vention points to disrupt the serious and growing threat of botnet and malware de-

livery operations [150, 83]. Takedown operations are just a subset of some of the

disruptive techniques that may be employed: infiltrating botnets for intelligence-

gathering and sabotage; re-routing network traffic meant for known C&C servers

to disrupt their communication channels (i.e., a DNS sinkhole); forcing Internet

service providers (ISPs) to shutdown malicious servers they are hosting; or physi-

cally seizing malicious server infrastructure and assets, and arresting the miscreants
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involved. These various takedown strategies were described in more detail in Sec-

tion 2.6. The success of such counter-operations is mixed [83].

Although the details of a number of takedown operations have been recorded

in the literature, very little examines how the targeted malware delivery operations

actually respond after such interventions. This leaves many important questions

unanswered. For instance, after a takedown operation, what happens next? Do

the malware operations break down? If not, how quickly do they resurface? Do

the operators move their infrastructure elsewhere, or perhaps change their modus

operandi? Assessing these takedown operations, are there other intervention points

in the malicious infrastructures that could prove to be more effective targets? Fi-

nally, considering the behaviours of these miscreants, could some of these reactions

be predicted and taken into account by LEAs and security practitioners?

In this study, using global download metadata collected in October 2015–

September 2016, I devise a novel tracking and analysis methodology to quantita-

tively assess the evolution of malware delivery operations that are targeted for LEA

takedown. In particular, I focus on three malware delivery operations (botnets)

that were targeted for takedown in the fall of 2015: the Dridex, Dorkbot, and

Dyre-Upatre operations. These botnets were selected as they were among the

few known to have been targeted for takedown between October 2015–September

2016, corresponding to the collection period of the dataset used herein. I then track

and comprehensively analyse the activities of these malicious operations over the

course of a year from multiple perspectives. More specifically, I conduct this anal-

ysis by breaking down the malware delivery operations into two components: the

upstream network infrastructure (server-side) and the downloaded binaries and their

dropper networks (client-side). This analysis paints a detailed picture of the dy-

namics, complexities, and business relationships of malware delivery operations,

particularly in light of a takedown attempt, and provides the security community

important pointers to consider when effecting future takedowns. In summary, this

study makes the following contributions:
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• I provide a novel methodology to track and analyse malware delivery opera-

tions over time using download metadata. This methodology could be used

to analyse any class of software delivery operation at scale, such as malware,

potentially unwanted programs (PUPs), or benignware.

• I observe a myriad of behavioural responses to takedown attempts by each

malware delivery operation. Specifically, I show that: (1) The use of dis-

tributed delivery architectures was common among the studied malware. (2)

A minority of malware binaries were responsible for the majority of download

activity. (3) The malware operations exhibited some “predictable” behaviours

following their respective takedown attempts such as displacement [105] and

defiance [180] behaviours. (4) The malware operations also exhibited previ-

ously undocumented behaviours, indicating the need for the research commu-

nity to use better monitoring techniques.

This study gives the security community deeper insight into the dynamics and com-

plexities of malware delivery operations, while also uncovering challenges and fur-

ther opportunities to disrupting them.

5.2 Targeted Malware Delivery Operations

In this study, I seek to uncover how specific operations evolve as a result of law en-

forcement takedown operations against them. In order to carry out such an analysis,

it is important to first identify takedown operations that occurred within the dataset

collection period, i.e., between 1st October, 2015 and 29th September, 2016. Sec-

ond, one would need to ascertain the ground truth available for any given botnet

operation, and whether it would be enough to provide any further insight to how

these botnets respond. As such, in this section, I outline three different botnets

identified as targets for takedowns within the period of the dataset, on which this

study focuses: Dridex, Dorkbot, and the Dyre-Upatre malware delivery operations.
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Dridex

The Dridex malware (also known as Bugat, Cridex, Drixed, and Dridexdownloader)

is a banking trojan and botnet malware, specifically designed to steal banking cre-

dentials and other personal information on a compromised system. Dridex has been

known to spread through phishing emails as a malicious attachment. It has also been

known to self-replicate by copying itself from compromised devices to mapped net-

work drives and local storage devices [4], as well as be delivered through exploit kits

on compromised web servers [9]. In late 2015, an indictment issued by the United

States FBI stated that the Dridex operation was reported to have caused losses of

over $10 million in the United States alone, and over $25 million worldwide [3, 14].

Ground truth. Of all the malware delivery operations studied in this work, the

Dridex case study appears to have the most ground truth available in the public do-

main. Namely, in addition to information gleaned from news reports and technical

assessments of the malware, the United States’ FBI and Department of Justice re-

leased a total of ten unsealed court documents relating to the Dridex investigation

and consequent sinkhole operation2. This ground truth is summarised as follows:

• In August 2015, one botnet administrator was arrested in Cyprus, while four

other co-conspirators, believed to be amongst the botnet leadership and lo-

cated in Russia, remained at large [4, 3, 14].

• On 4th September, 2015, the National Crime Agency in the United Kingdom

undertook a takedown operation to collectively disable the C&C servers that

formed the backbone of the Dridex botnets [3, 14]. As a result, the super-

peers and peers of these botnets were believed to no longer have any cen-

tralised mechanism from which to take direction and receive new commands.

Nonetheless, it was understood that the remaining operators could still re-

establish contact with these bots and continue their nefarious operations.

2The full legal documents are accessible online at https://www.justice.gov/

opa/pr/bugat-botnet-administrator-arrested-and-malware-disabled

and https://www.fbi.gov/contact-us/field-offices/pittsburgh/news/

press-releases/bugat-botnet-administrator-arrested-and-malware-disabled
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• On 9th October, 2015, law enforcement officials began a 60-day DNS sink-

hole and disinfection intervention [3, 14]. In this study, I estimate that the

counter-operation occurred in the window between the 8th October and 10th

December observations. The specifics of the DNS sinkhole operation were

sealed, but it was known to target the super peers of the botnet, such that the

C&C servers would not be able to communicate with already infected end-

user computers. It is also unclear which geographic regions were affected by

this DNS sinkhole, but it is likely that the law enforcement agencies placed

greater weight on servers based in the US. The disinfection operation involved

the authorities contacting victims providing instructions on how to remove the

Dridex malware from their devices.

• In mid-December, 2015, at the end of the 60-day intervention, a court order

was renewed to extend the disinfection for an unknown duration [3, 14]. It

should be noted that I only depict the 60-day intervention in this analysis

since it is a known and strictly-defined period.

Dorkbot

The Dorkbot malware is a family of worms known to steal data from compromised

systems, disable security applications, and form botnets to distribute other types

of malware [13, 17]. They have been known to propagate through infected USB

flash drives, instant message applications, social networks, spam messages, and

exploit kits. It has also been noted that, at some point, a significant proportion of

the Dorkbot infrastructure was based in Poland [17]. However, at the time of the

takedown operation, it had diversified to having C&C servers in other regions, such

as the rest of Europe, Asia, and North America [12].

Ground truth. Like the takedown operation against the Dyre and Upatre botnets,

there is limited open source intelligence regarding the Dorkbot takedown. The fol-

lowing ground-truth is available from public sources:
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• In December 2015, security companies and law enforcement bodies around

the world conducted a swift DNS sinkhole and seizure operation against the

Dorkbot botnet [15, 18, 12].

• The precise date of the takedown operation is unknown, but it is estimated

to have occurred on or just before 3rd December, 2015, which was the when

the takedown operation was first announced in the public domain retrospec-

tively [18]. Further, Microsoft confirmed that this takedown occurred early in

December [15]. Therefore, in this study, I estimate that the counter-operation

occurred in the window between the 26th November and 3rd December ob-

servations.

Dyre and Upatre

The Dyre and Upatre operations provide an interesting case study, not least given

the reported law enforcement operation targeting the Dyre botnet coincided with

a sudden, global drop in malicious download activity, which was observed in an

earlier study [116]. Dyre (also known as Dyreza, Dyzap, and Dyranges) is a so-

phisticated financial fraud trojan that targets Windows computers. Dyre is designed

to steal credentials and hijack banking sessions on infected machines in man-in-

the-middle fashion, siphoning off funds from the compromised accounts to those

controlled by the botnet operators. Dyre has also been reported to use infected ma-

chines to replicate itself and send copies to further users through the victim’s email

contact list [11]. However, most notably, security researchers have identified the

Dyre-Upatre relationship as being key to its operation, where, after hosts are in-

fected with Upatre malware, Upatre proceeds to install Dyre malware onto these

devices [11, 5, 189]. More specifically, Upatre is a dedicated dropper malware:

once on a victim machine, its sole purpose is to deliver additional malware compo-

nents onto it. However, besides delivering Dyre samples, Upatre has been known

to distribute other malware families such as GameOver Zeus, Kegotip, Locky, and

Dridex [19].

90



In this study, I focus only on the activities of the Upatre dropper. This is

because little to no observable Dyre download activity is found in this dataset, hence

giving little insight on its evolution. Why exactly this is the case is not known.

However, since Dyre was known to undergo rapid polymorphism [11], it could be

indicative of the inability of antivirus engines to keep up with its high churn of

malware binaries, or some form of measurement error with the telemetry sensors

used to collect this dataset.

Ground truth. Open source intelligence on the law enforcement operation against

the Dyre-Upatre operations is very limited, especially with regards to the particulars

of this counter-operation. Nonetheless, sources have established the following:

• In November 2015, law enforcement officials conducted a seizure and arrest

operation against the Dyre operators in Moscow, Russia.

• The precise date of this counter-operation is unknown, but it is estimated

to have occurred on or just before 18th November, 2015, which is the day

sudden drops in Dyre and Upatre activity were observed by security re-

searchers [5, 116]. Furthermore, sources reported that the arrests occurred

between 18th and 19th November [42]. Therefore, in this study, I estimate

that the counter-operation occurred in the window between the 12th and 19th

November observations.

5.3 Methodology
Although the principal focus of this study is on the dynamics of three specific mal-

ware delivery operations in light of law enforcement takedowns against them, I

devise a generic methodology that may be adopted to characterise any class of file

delivery operation, whether it be malicious or benign. Therefore, in this section, I

detail the steps taken to (i) build the download graphs for the year-long dataset; (ii)

classify the file nodes as either malware, potentially unwanted program (PUP), be-

nign, along with their specific software brands/families; and (iii) aggregate and track

each software delivery operation in time, with a particular focus on their evolving

use of delivery infrastructure and their dropping behaviours.
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It is pertinent to note that, in this study, I only seek to analyse file delivery

operations – not file delivery campaigns. More precisely, I only analyse aggregate

(global) file delivery activity pertaining to a given software family (e.g., all Zeus

malware delivery activity). This is opposed to the more fine-grained analysis of

individual clusters of activity (campaigns) pertaining to a single software family

(e.g., individual Zeus botnet campaigns, which may involve independent operators

by virtue of its crimeware-as-a-service business model [183]). I align with the above

distinction between the terms operation and campaign for the purposes of this study.

As such, disentangling individual delivery campaigns (and the respective actors) for

a given operation is beyond the scope of this study.

5.3.1 Building Download Graphs

I adopt the graph-building methodology as described earlier in Section 4.2.1.2. For

ease of reference, the structure of a download event is outlined in Equation 5.1:

d =< I,D,Ur, ...,Uf ,Ff ,A f ,Up,Fp > (5.1)

where I is the IP address from which the file was downloaded, D is its FQDN, Ur is

the initial URL in an HTTP redirection chain, Uf is the host URL of the download

(after removing the URL parameters) and the terminal URL in a redirection chain,

Ff is the downloaded file identified by its SHA-2, Fp is the parent file identified by

its SHA-2, and Up indicates the URL from which this parent file was downloaded.

A f represents a set of attributes which provides additional information about file

Ff , such as its filename, its size (in bytes), and the “reputation” and “prevalence”

scores assigned to these files by Symantec’s static and dynamic analysis systems

(see Section 3.2.1).

It should be noted that an updated graph schema is used in this study as opposed

to the one used in the measurement study of Chapter 4. In particular, this new

schema includes nodes that denote fully qualified domain names (FQDNs). This

schema also retains download event information for every node in the graph. An

example of the new schema is shown in Figure 5.1.
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IP: 1.2.3.4 IP: 5.6.7.8

FQDN: 
parent.com

FQDN: 
download.file.com

URL: 
http://parent.com/path

URL: 
http://download.file.com/path

Intermediate URL: 
http://intermediate.url/redirection/path

FQDN: 
intermediate.url

File B: 
SHA-2: …

File C: 
SHA-2: …

File A: 
SHA-2: …

Figure 5.1: An updated schema to interpret download graphs, which now includes FQDNs.
Two series of download events are highlighted.

5.3.2 File Classification

Having constructed the download graphs for each observation window, I build on

the file classification technique used in Section 4.2.1.4. Specifically, each file node

(based on its SHA-2) is labelled as either malware, potentially unwanted program

(PUP), benign, or, if there is no available ground truth, unlabelled. If it is known,

I also specify the software family to which the SHA-2 belongs, whether malicious

or benign. Otherwise, I label SHA-2s without known software family labels as

singletons. In total, I classify 1,034,763 malicious file SHA-2s (4.83% of all files),

443,541 (2.07%) of which are classified as malware, and the remainder as PUP.

On the other hand, 350,517 SHA-2s (1.64%) are known to be benign, as either

VirusTotal flags them as not malicious (349,746 files), and/or the NSRL maintains

that they are reputable (9,007 files). I later track the evolution of delivery operations

associated with each malware or PUP family in time, while also retaining benign

and unlabelled files to observe the co-evolution of malicious activity in the context

of background downloads.

5.3.2.1 Aggregating Family Aliases

A major part of this study is to analyse the activities of three malware delivery

operations: Dridex, Dorkbot, and Upatre. It is common for some antivirus engines

to label each malware family differently, which may lead to multiple aliases being

observed that refer to the same malware family. Therefore, I configure the AVClass
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tool to map specific aliases to specific families. Specifically, based on the sources

for each malware operation in Section 5.2, I aggregate the following aliases to each

respective family:

• Dridex, Cridex, Bugat, Drixed, Dridexdownloader �! Dridex;

• Dorkbot, Ngrbot �! Dorkbot; and

• Upatre �! Upatre.

Other known aliases for these families that are ambiguously designated (i.e., used to

refer to several, independent malware families) or were not observed in the dataset

were omitted.

5.3.3 Tracking and Analysing Operational Activity
Besides just monitoring malicious file presence, I want to establish how their use of

delivery infrastructure and their dropping behaviours evolve alongside them. It is

particularly interesting to understand the evolution of malicious file delivery opera-

tions in the wake of different, disruptive strategies being utilised against them, such

as botnet takedowns or coordinated arrests. This goal is achieved in two stages.

First, I devise a methodology to identify and track a (malicious) file delivery opera-

tion. And second, I derive a set of metrics that describe different aspects of a given

file delivery operation, and conduct time series analysis on these metrics.

5.3.3.1 Tracking Delivery Operations

The method to tracking delivery operations and their activity is simple. That is,

for a (target) software family that I seek to analyse, SF , and for the ith observation

period, where i 2 [1..53] (i.e., every Thursday for a year), the following algorithm

is used:

1. Compute FSF
i : the set of all file nodes pertaining to software family SF in

observation period i.

2. Compute PSF
i : the set of all parent nodes (URLs, IPs, FQDNs, parent files)

involved in the download events that deliver the files FSF
i in observation pe-

riod i. These parent nodes represent part of the upstream delivery network
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used to distribute software family SF directly. In terms of real-world ac-

tors, these parent nodes could be attributed to, for example, upstream hosting

services, compromised websites, or pay-per-install network operators and af-

filiates [47].

3. Compute CSF
i : the set of all child nodes (files) that are dropped by the files

in FSF
i in observation period i. These child nodes represent part of the down-

stream delivery network of software family SF , provided that this software

family downloads other files. Being payloads, these child nodes could be

attributed to the clients of the SF delivery network.

4. Finally, compute the node attribute look-up table, ASF
i , which stores the at-

tributes of all file nodes (target, parent, child) and network nodes (URL, IP,

FQDN) that form the delivery network of software family SF in each observa-

tion period i. File node attributes include software family, file size, reputation

and prevalence scores, # of times downloaded, and # of drops. Network node

attributes include location (country), top-level domain, and effective second-

level domain, as applicable.

5.3.3.2 Time Series Analysis

I seek to generate metrics (or features) which sufficiently describe the different as-

pects of a file delivery operation over the observation period. Using the amalga-

mated data structures, FSF , PSF , CSF , and ASF as defined above, I compute and

analyse time series data based on two groups of metrics:

Network dynamics. This group of metrics capture the dynamics of the server-level

activity in the file delivery operation. The numbers of URLs, domains, IPs, and

countries used to host the delivery servers and deliver files to end-users, indicating

the pervasiveness and extent of resources used for the delivery operation. The num-

bers of IPs associated with each domain provide indicators of the possible use of

the Fast Flux technique (rapidly changing IPs) [109], or the use of content distri-

bution networks (CDNs) and servers spread across different geographic regions –

common methods to avoid detection and to increase botnet resilience [172]. On the
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Group Metric Description
Aggregate Network Activity

URL count Total no. of URLs used in file delivery.
FQDN count Total no. of FQDNs used in file delivery.
E2LD count used Total no. of e2LDs used in file delivery.

Network IP count Total no. of IP addresses used by file delivery servers.
Dynamics Country count Total no. of countries associated with file delivery servers.

Evasion Indicators
IP count per e2LD used No. of IPs associated with each e2LD used in file delivery.
E2LD count per IP used No. of e2LDs associated with each IP used in file delivery.

Aggregate Download Activity
Download count Total no. of times the target family is downloaded.
Drop count Total no. of times the target family delivers other files.
Download count per SHA-2 No. of times each target family SHA-2 is downloaded.
Drop count per SHA-2 No. of times each target family SHA-2 delivers other files.

Relational Dynamics
Parent SHA-2 count Total no. of SHA-2s used to deliver the target family.
Child SHA-2 count Total no. of SHA-2s delivered by target family.

Distributed Delivery Indicators
Downloader URL count per SHA-2 No. of URLs used to deliver each target family SHA-2.
Dynamics IP count per SHA-2 No. of IPs used to deliver each target family SHA-2.

E2LD count per SHA-2 No. of e2LDs used to deliver each target family SHA-2.
Polymorphism Indicators

SHA-2 count No. of target family SHA-2s observed.
SHA-2 churn No. of SHA-2s in observation i lost in observation i+1.
File size per SHA-2 File size of each SHA-2 in kilobytes.
Reputation score per SHA-2 Malice score assigned to each SHA-2 by Symantec.
Prevalence score per SHA-2 Prevalence score assigned to each SHA-2 by Symantec.

N.B: Prevalence indicates how often a SHA-2 is detected.

Table 5.1: The metrics used to analyse each malware delivery operation.

other hand, the number of domains associated to any given IP could be indicators

of servers residing within shared-hosting clusters, or servers using domain generat-

ing algorithms (DGA) – another commonly used technique by botnet C&C servers

to avoid detection [27, 163]. Finally, I also quantify the most popular domains,

top-level domains (TLDs), IPs, and countries used for each delivery operation.

Downloader dynamics. These metrics capture information relating to the software

family in question and the binaries it uses to drive the delivery operation. Specif-

ically, I obtain the total and per-SHA-2 counts of download and dropping events

for the software family, which are key performance indicators of its delivery op-

eration. I also keep track of the total and top N families involved in the software

family’s download activities. Further, I analyse the numbers of URLs, domains,

and IPs used to deliver each file SHA-2, which are all indicative of the diversity

in distribution vectors used, perhaps to increase outreach to end-users, or to evade
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detection systems more effectively. I also examine metrics that indicate polymor-

phism (a malware characteristic that is used to evade detection [31]): the number of

SHA-2s observed, their churn rates, and the distributions of their file sizes, malice

(reputation) scores, and prevalence scores (as detected and assigned by Symantec

security systems). It should be noted that a higher malice score corresponds with a

higher likelihood that a file is malicious, while a higher prevalence score indicates

that a file is observed by Symantec sensors more frequently (see Section 3.2.1).

All these metrics are summarised in Table 5.1 and analysed in Section 5.4.

In summary, this operation tracking and analysis methodology, coupled with the

labelled, longitudinal graph data, grants an unprecedented insight into the dynamics

of malicious file delivery operations, the business relationships between them, and,

most importantly, how they each react to disruptive counter-operations.

5.4 Analysis
In this section, I apply the techniques as described in Section 5.3.3 to analyse the

evolution of three different malware delivery operations: the Dridex, Dorkbot, and

Dyre-Upatre botnets. Each of these botnets faced law enforcement agency (LEA)

takedown attempts between October 2015 and September 2016. For each mal-

ware delivery operation, the time period of the associated LEA operation is high-

lighted, allowing one to analyse the evolution of the botnet’s activities in light of this

counter-operation. The analysis of each malware delivery operation is broken down

into two general categories of metrics: its network dynamics, and its downloader

dynamics.

5.4.1 Network Dynamics

I begin my analysis with the upstream delivery networks of each malware deliv-

ery operation, where I compute the network dynamic metrics as described in Sec-

tion 5.3.3.2 and analyse them herein. Figure 5.2 shows a number of time series

denoting aggregate network dynamics, and Figure 5.3 evasion indicators for each

malware delivery operation. I note some apparent features. For instance, Dridex

exhibits consistent growth in all forms of network activity from early October 2015
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Figure 5.2: Aggregate network activity: (a) # of URLs used and top 5 TLDs; (b) # of
URLs used and top 5 e2LDs/IPs; (c) # of FQDNs and # of e2LDs; (d) # of IPs
used and top 5 hosting countries; and (e) # of IPs and # of hosting countries.
Dridex exhibits consistent growth in network activity during the DNS sinkhole,
while Dorkbot and Upatre both exhibit significant, short-term drops in network
activity after their respective takedowns with varying long-term responses.
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Figure 5.3: Evasion indicators: (a) # of e2LDs associated with N+ IPs; and (b) # of IPs
associated with N+ e2LDs. Dridex was found to use shared-hosting platforms
and CDNs often. Upatre increases its use of IPs with 2+ domains from mid-
April, most of which were for .ru DGA domains.

(despite the DNS sinkhole operation) until the end of February 2016, after which

its network activities tail off. On the other hand, the Dorkbot and Upatre operations

(which faced “seizure” counter-operations) both exhibit significant drops in overall

network activity in the short-term, with varying long-term responses. This is con-

sistent with the findings of other researchers [83] in that, though botnet responses

to takedowns are highly variable, takedowns that involve the physical seizure of

botnet infrastructure are usually associated with longer-lasting and more significant

effects.

5.4.1.1 Dridex

Looking more deeply into the network dynamics of the Dridex operation, we see

two distinct stages of network activity. Initially, there is a stage of consistent in-

crease in and diversification of its server usage in all respects, specifically over the

course of the 60-day DNS sinkhole counter-operation – this is from 1st October–3rd

March. This is followed by a stage of constantly decreasing network activity from

3rd March–29th September. I note some interesting observations.

The first observation is that the period of consistent growth in malicious server

activity seems to be aligned with the same 60-day period of the DNS sinkhole

counter-operation. On the other hand, once this sinkhole operation concluded in

early December 2015, Dridex server usage appears to fall and rise for a number of
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weeks. Why this sequence of events occurs is unclear. One would typically expect

malicious server activity to decrease or to remain at a controlled level during a DNS

sinkhole operation, as observed by other researchers [83]. This is clearly not the

case for the Dridex operation, where we observe the opposite: an increase in Dridex

network activity both during and following the takedown operation. Nonetheless,

one must consider (at least) two factors regarding this observation. First, the DNS

sinkhole operation itself may not have been effected adequately or consistently. It

is possible that the Dridex operators switched to back-up or alternative servers that

were not tracked and subsequently missed by the agencies enforcing the sinkhole

counter-operation. At the same time, it is possible that the C&C servers targeted for

DNS sinkholing were separate to the servers used to deliver Dridex malware to the

end-hosts. If this was the case, this could highlight a significant limitation of DNS

sinkholing as a sole countermeasure. Second, it is likely that the Dridex operators

were already aware of the impending LEA operation, taking into account the earlier

arrest of one of their operators in August 2015, the preceding sinkhole operation by

the National Crime Agency in September 2015, and the fact that the US authorities

had already served four of the other Dridex operators notices of indictment [3]. As

a result, and perhaps in retaliation, the botnet operators may have increased their

activities and/or moved their operations elsewhere, both of which could lead to an

overall increase in network activity during this period.

The second observation of interest is that when we look at the actual number

of download/redirection URLs used in the first era (in conjunction with the most

common TLD suffixes) and the number of IPs used, as shown in Figures 5.2(a) and

5.2(d), respectively, we see significantly increased usage of download URLs with

a .com suffix and download servers hosted in the US. Likewise, we see similar

(albeit less significant) increases in URLs with .uk suffixes and GB-based servers.

Given that US law enforcement (along with that of the UK) were the driving force

behind the Dridex takedown efforts, this increased usage of US-based (and to a

lesser extent, GB-based) servers and domains could again be indicative of a con-

certed response by the Dridex operators. Specifically, the malware operators could
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have been targeting US infrastructure and end-users primarily in reaction to their

takedown attempts. At the same time, without any additional data, one cannot rule

out the possibility that the Dridex operation had a significant dependence on US

infrastructure prior to these takedown efforts, so they would just be attempting to

recover lost ground. Nonetheless, it is clear that these malware operators ramped

up their operations at the same time that LEAs were launching a counter-operation

against them, culminating in significantly increased network activity over the ensu-

ing months.

It is also interesting to note that the Dridex operation did not rely on

any one download server or region. This is indicated by the low propor-

tion of download activity by the most commonly used domains (ammyy.com,

library-online.org, etc), as shown in Figure 5.2(b). This is also reflected

in the approximate 1:1 ratio in # of FQDNs-to-# of e2LDs attributed to its down-

load servers (Figure 5.2(c)). Similarly, as Figure 5.2(e) shows, up to 35 differ-

ent countries are used to host Dridex download servers. Querying the data, I

found that the Dridex operation makes significant use of (i) websites on common,

shared-hosting platforms, and (ii) multi-region CDNs (such as dropbox.com or

googleusercontent.com) as malware delivery vectors. This accounts for the

distributions of domains using multiple IPs and IPs using multiple domains, respec-

tively, as shown in Figures 5.3(a)–(b). This diversification in distribution channels

naturally makes it difficult to identify bottlenecks in the Dridex operation. It is

possible that this approach was implemented by design, or a learned adaptation to

previous takedown attempts.

Finally, as we see in the second era of its network activity, the Dridex operation

appears to “wind down” its server usage just as quickly as it grew in the preceding

months. It also appears that this reduced server usage stabilises for a few weeks

from around 4th August. Without additional data, it is difficult to draw any robust

conclusion on the potential causes of this reduction in network activity, particularly

on the likelihood that it was as a consequence of the takedown operation, a second

(undocumented) operation, or some other factor. However, I also note how its net-
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work activity stabilises from 4th August. One cannot rule out the possibility that

the reduction in Dridex network activity was consciously effected by its operators,

perhaps for operational reasons.

5.4.1.2 Dorkbot

On a general note, the network activity of the Dorkbot operation appears to be varied

and highly stochastic in nature, in clear contrast to the other malware operations. It

also appears that the Dorkbot operation is significantly less diverse in its use of

download servers than the other malware operations. This is indicated by the use of

fewer unique URLs, domains, and IPs in the Dorkbot delivery operation. Further,

I previously noted the sharp decline in Dorkbot’s overall network activity just after

the DNS sinkhole and seizure counter-operation. However, due to its stochastic

nature, it is difficult to ascertain the significance of this decline, as Dorkbot exhibits

erratic levels of network activity, both before and after the takedown operation.

Analysing its network dynamics more closely, in Figures 5.2(a)–(b), Dorkbot’s

overall use of download/redirection URLs shows some cyclicity. Specifically, we

observe peaks in the number of URLs used roughly every 12 weeks. A similar pat-

tern is observable with its use of IPs, as shown in Figure 5.2(d)–(e), albeit with a

more pronounced, downward trend. It must be said that this pattern does not appear

in Figure 5.2(c), which shows Dorkbot’s (equally stochastic) use of domains gradu-

ally decaying for a few months before oscillating at a reduced level. Looking at its

use of top e2LDs/IPs in Figure 5.2(b), it is clear that these peaks in URL and IP ac-

tivity are linked. Particularly, the Dorkbot operation tends to rotate between specific

server IPs to spearhead its network-based delivery activities: initially, it primarily

uses web.de (a server with a German TLD) between 1st October–12th Novem-

ber, then it briefly moves to 155.133.18.131 (a server in Poland) between 12th

November–17th December, traversing the takedown period. Afterwards, it begins

to utilise 151.80.8.12 (a server in France) from 24th December–31st March,

before briefly switching to 217.23.15.136 (a server in Netherlands) from 31st

March–5th May, before fluctuating in its use of 62.210.6.3 (another server in

France) from 5th May–11th August.
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This pattern of displacement in Dorkbot’s server usage appears to be highly

coordinated, although the cause or purpose of this constant shifting in infrastructure

remains unclear. It could be that the Dorkbot operators were changing servers to

beat blacklisting services, or for some financial benefit. However, whatever the

cause, it is difficult to attribute this patterned behaviour to the takedown operation.

As the data shows, Dorkbot had already begun to rotate between servers just before

the takedown occurred. Even if the takedown was a factor, this rotating behaviour

could also have been part of Dorkbot’s distributed delivery architecture [12], and

perhaps the reason for its apparent resilience to the takedown attempt. It should be

noted that this (slow) rotation between servers is not the same as Fast Flux, the latter

of which typically involves a single domain rotating between multiple IP addresses

in a short period of time (i.e., within a single day).

Notwithstanding, particular Dorkbot domains that flux between several

IPs per day were observed, such as masterhossting|7772.in and

superstar|7747.pw (vertical bars inserted by author). Given that online

sources have identified these domains as malicious,3 it is likely that these servers

used Fast Flux.

Beyond its heavy use of particular IP addresses, the Dorkbot operation also

utilises some domains from a mix of regions, as shown in Figures 5.2(a) and 5.2(d).

This spread of servers is consistent with other research that identified the Dork-

bot C&C infrastructure to be distributed among a number of intercontinental re-

gions [12]. Given that the Dorkbot operation only used a few, particular servers to

spearhead its delivery activities, it is probable that these other servers were held in

reserve as back-up infrastructure.

5.4.1.3 Upatre

The Upatre operation also exhibits an interesting progression of network activity,

which, like the Dridex operation, can also be divided into a number of distinct

stages, depending upon which network characteristic one is focusing.

3
https://www.malwareurl.com/ns_listing.php?as=AS45945
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In general, the Upatre operation experiences a rapid increase in network ac-

tivity in the first few weeks (1st October–12th November) up until the arrest and

seizure takedown is carried out against the Dyre malware operation. Specifically,

when we look at Upatre’s use of download URLs in Figures 5.2(a)–(b), we see that,

during this period, the Upatre malware tends to operate through download URLs

with .com (and to a lesser extent, .ms) suffixes. The most common effective

second-level domains that it uses in this period are ymail.com (Yahoo! Mail)

and afx.ms, which is a domain registered by Microsoft Corporation and known to

be associated with Outlook Mail.4 This is consistent with the observation that Up-

atre is often delivered to victims through malicious email attachments [11, 5, 189].

During the same period, we observe Upatre’s varied and progressive use of IPs

from different countries, led by its use of servers in the United States, Germany

(DE), France, and Ukraine (UA), as shown in Figure 5.2(d). It is also interesting to

note that, as we see in Figure 5.2(e), the Upatre operators ensure that their delivery

servers are distributed among a number of countries. Clearly, the Upatre operation

was being distributed through servers across multiple geographic regions, such as

edge CDN servers for email services. A simple query of the data confirms this as I

find Upatre malware being linked to hundreds of region-specific subdomains of var-

ious email servers in this early period, such as {region}{integer}.afx.ms

or email{integer}.secureserver.net.

After the takedown operation, Upatre’s network activity rapidly decreases over

a number of weeks (12th November–24th December). As security researchers have

noted [11, 5, 189], the Dyre malware heavily relied upon the Upatre dropper mal-

ware as its main infection vector. As such, it is plausible that the taking down of

the Dyre operation could have had led to some reverberations in the Upatre opera-

tion, perhaps due to some infrastructure being shared between the two. However,

as we will later see, this drop in Upatre network activity corresponds to a drop in

Upatre binaries being downloaded onto victim computers. Therefore, it remains

unclear what causal links could exist between the takedown of the Dyre operation

4
https://whois.domaintools.com/afx.ms
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and the subsequent drop in Upatre downloads (which were predominantly through

malicious email attachments), as the Dyre malware was only known to be a payload

of Upatre. Likewise, the question also remains: what infrastructure could have been

shared between the two operations?

As time goes on, we observe contrasting behaviours between Upatre’s use of

download URLs/domains and its use of IPs. Namely, Upatre’s use of IPs has a

downward trend over the ensuing months (24th December–29th September), as

shown in Figures 5.2(d)–(e). On the other hand, as Figures 5.2(a)–(c) show, its

use of download URLs and domains is quite stable for the first few months (24th

December–14th April), but then suddenly increases and fluctuates at a raised level

(14th April–29th September).

This behavioural disparity between Upatre’s use of IPs and its use download

URLs/domains is interesting. In particular, we observe a transition from the two

metrics being quite strongly correlated at one stage (i.e., their correlated peak and

trough between 1st October–24th December) to them becoming increasingly incon-

gruent as time goes on.5

This could be indicative of a significant change in Upatre’s upstream delivery

infrastructure some point after the Dyre takedown operation, such as a move from

a distributed architecture to a more centralised one. I find some evidence to sup-

port this hypothesis. First, in Figures 5.2(a)–(b), we observe clear displacement

in the Upatre operation from one set of domains to another: particularly from sites

with .com and .ms TLDs (such as *.ymail.com and *.afx.ms) to those with

.net and .ru suffixes (such as *.alfafile.net). Second, as we see in Fig-

ure 5.3(b), from around 14th April we observe an increase in the use of IPs that are

associated with 2+ e2LDs, corresponding to Upatre’s migration to the .net and

.ru domains.

Upon further inspection, these new servers (particularly those with .ru suf-

fixes) were most likely generated by a DGA. For instance, on 28th April, I identified

5Pearson’s and Spearman’s correlation coefficients were computed for the Upatre IP count vs.
FQDN count during three periods (inclusive): 1st October–24th December, 31st December–14th
April, 21st April–29th September. (r,r) as follows: Oct Dec(0.76,0.60), Dec Apr(0.63,0.45),
Apr Sep(0.41,0.11).
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139 domains with a common domain structure: a static keyword for the subdomain,

a random sequence of words and numbers for the second-level, and the .ru TLD

(e.g., slingto.scene-root85.ru, slingto.robbusymyself.ru, and

slingto.hanghandle.ru). Furthermore, these domains were all clustered

around the same set of IPs, some of which involved over 10 different e2LDs per

cluster. One must also note Upatre’s heavy use of the alfafile.net (a file-

hosting platform) and its various subdomains around this time, apparently replacing

the email services and CDNs that it relied on several months before. Indeed, this

marked change in delivery infrastructure by the Upatre operators shows a complete

change in their modus operandi (i.e., from using compromised email services to

using malicious domains with DGA as infection vectors), and could very well be

evidence of a learned adaptation to previous takedowns.

5.4.2 Downloader Dynamics

In the last section, I analysed the network-level dynamics pertaining to each of the

three malware delivery operations under study. In this section, I move my analysis

on to the characteristics and download activities of the malicious binaries them-

selves, which are fundamental to malware delivery operations. In particular, I jux-

tapose the aggregate downloader dynamics, familial relationships (parent, children),

delivery tactics, and polymorphic behaviours of the three malware operations simul-

taneously.

Figure 5.4 shows the aggregate download dynamics of each malware operation,

while Figure 5.5 shows their relational dynamics (i.e., # of parent and child files),

Figure 5.6 shows indicators of distributed delivery tactics, and Figure 5.7 indicators

of polymorphic behaviour by the malicious binaries.

5.4.2.1 Aggregate download activity

Figures 5.4(a)–(b) show the aggregate downloads and dropping activities of the

Dridex, Dorkbot, and Upatre malware, whereas Figures 5.4(c)–(d) show the distri-

butions of files that are downloaded N+ times, or drop N+ files. Immediately, we

observe similar download behaviours between the Dridex and Upatre malware, but
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Figure 5.4: Aggregate download activity: (a) # of times downloaded; (b) # of drops by
target malware; (c) # of SHA-2s downloaded N+ times; (d) # of SHA-2s that
drop N+ files. Bursts of dropping activity by Dridex (during takedown) and
Upatre (after takedown). Dorkbot activity more consistent throughout the year
except for the sudden increase at the end. N.B: a few binaries are responsible
for the majority of download activity (an approximate Power law relationship).

significantly different behaviours from Dorkbot. This becomes a recurring theme in

this analysis of download activities.

For the Dridex malware, we observe “bursts” of downloads and dropping ac-

tivity during the takedown counter-operation, and resurgence of (just) download

activity between 11th February–11th March, in correspondence with the peak in

its network behaviours around the same time. This supports the notion that the

Dridex operators expanded their operation during the LEA takedown, perhaps in

anticipation of (or in retaliation to) the expected disruptions due to the DNS sink-

hole. It is worth noting that that 95.8% of the files dropped by Dridex between

29th October–24th December were unclassified. Nonetheless, I identified a few in-

stances of known malware families being delivered by Dridex, including some back-

107



door malware (farfli, tinyloader), financial fraud trojans (zbot, zusy,

poscardstealer), among others (troldesh, yakes, kegotip). It is diffi-

cult to draw any formidable conclusions on this aberrant behaviour given the lack

of ground truth on the files dropped by the Dridex malware. Still, it is interesting

to see Dridex - a financial fraud trojan that was known at the time to operate only

as a payload rather than a dropper - suddenly engage in this practice of diversified,

downstream malware delivery. Looking at Figure 5.4(c), it appears (at least, visu-

ally) that the Pareto principle applies to the frequency of downloads for each Dridex

file, where the majority are only downloaded once while decreasing proportions of

files are downloaded more frequently. On the other hand, as we see in Figure 5.4(d),

almost none of the Dridex binaries engage in dropping activities. Rather, through

querying the data, it was found that only up to 3 binaries are responsible for all drop-

ping activity on any given day. This supports the notion that the Dridex malware

was primarily designed to operate as a malicious payload rather than an intermedi-

ate dropper. However, it is clear that specific strains of this malware were modified

to drop other malware components onto victim systems.

With the Upatre malware, we observe similarities to that of the Dridex mal-

ware. As we see in Figure 5.4(a), and much like its network activity as analysed

in the previous section, we observe a peak in Upatre downloads just before the ar-

rest and seizure counter-operation around 19th November. We also observe several

“bursts” of Upatre dropping activity in Figure 5.4. In particular, of the files that

the Upatre malware drops, we find that on 12th November, 60% were PUP (mostly

convertad) and 23% malware; on 24th December, 98% were unclassified; and

between 28th January–4th February, 77% were PUP (mostly amonetize) and 3%

malware. It is interesting to see that such a high proportion of Upatre payloads are

PUP (as opposed to other malware), such as convertad and amonetize, which

are families known to bundle and and integrate with legitimate software.6 This case

study gives an indication of how convoluted file dependencies and delivery chains

between malware, PUP, and benign software can be in the wild. As we look at the

6
https://www.shouldiremoveit.com/ConvertAd-88792-program.aspx
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bounded frequency plots of downloads per SHA-2 and drops per SHA-2 in Fig-

ures 5.4(c)–(d), we see a similar case as with the Dridex malware: (i) an apparent,

inverse relationship between SHA-2 count and the frequency in which each SHA-2

is downloaded; and (ii) a minority of files being responsible for all of the Upatre’s

dropping activity. The latter observation is more strange in this case, given that the

Upatre malware is known to operate mainly as a dropper malware. More generally,

we find that the Upatre malware is downloaded more frequently than it downloads

other files within this observation window.

Analysing the Dorkbot malware, we observe significantly different download

behaviours than the other malware families. First, as we see in Figures 5.4(a)–(b),

the download and dropping dynamics of the Dorkbot operation do not appear to

change significantly over the course of the year (including the takedown period),

barring a sudden increase at the end of the observation period. I previously noted

that it was difficult to attribute Dorkbot’s ever-changing network behaviours to the

takedown counter-operation. The lack of any significant change in Dorkbot’s over-

all download activity over the observation period seems to support this position even

further. In Figure 5.4(c), the plots of downloads per SHA-2 for the Dorkbot mal-

ware show a generally “flatter” distribution between each group (i.e., more evenly

spaced plots for N = 1,2,3, ...). This seems to indicate a weaker Pareto distribution

(if any) in comparison to the other malware operations. The Dorkbot operation is

also differentiated by its higher proportion of file SHA-2s that engage in dropping

behaviour. Specifically, in Figure 5.4(d), while most do not engage in any dropping

behaviours, up to 40% of Dorkbot SHA-2s deliver 9+ subsequent payloads over the

course of the observation period.

5.4.2.2 Relational dynamics

In Figure 5.4 we observed the aggregate download activity of the three malware op-

erations under study. It is also important to understand the other software families

that contribute to this activity, either as droppers (i.e., parent files that download the

target malware), or as payloads (i.e., child files that are dropped by the target mal-

ware). In particular, Figures 5.4(a)–(b) show the top 5 labelled software that either
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Figure 5.5: Relational dynamics: (a) # of SHA-2s that download target malware; and (b)
# of SHA-2s dropped by target. N.B: the sharp increase in Upatre upstream
droppers after mid-April, correlating with its increased use of DGA servers.

download the target malware (parent files) or are downloaded by the target malware

(child files). In most cases, we see that these “top” families account for a very small

percentage of the overall download activity of the target families. The exception

to this appears to be the case of the Dorkbot operation, where in Figure 5.4(a) we

see a sharp increase in ruskill downloads towards the very end of the observa-

tion window, while in Figure 5.4(b) we see that the yakes, teslacrypt, and

bublik malware families account for most of Dorkbot’s dropping activities.

Turning to the question of how many families are related to the studied mal-

ware, Figure 5.5 shows the aggregate number of families involved in each malware

operation. For the Dridex operation, Figure 5.5(a) shows very few upstream mal-

ware distributing it during the year. This implies that the Dridex operation relied

more on server delivery infrastructure than dropper malware, which is consistent

with other observations of this malware being delivered through malicious email

attachments and exploit kit downloads [9].

The Dorkbot behaves very differently. As Figure 5.5(a) shows, the Dorkbot

malware relies consistently (of a cyclic nature) on upstream malware droppers.

Particularly up until the takedown, Dorkbot was delivered by malware such as

gamarue, kasidet, and yakes. However, after the takedown, the number of

upstream malware in the Dorkbot operation dropped significantly, though, as pre-

viously noted, it’s overall download activities seemed unaffected for the most part.
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Figure 5.6: Distributed delivery indicators: (a) # of SHA-2s associated with N+ URLs;
(b) # of SHA-2s associated with N+ e2LDs; and (c) # of SHA-2s associ-
ated with N+ IPs. Dorkbot downloads often without any traceable network
resource, alluding to direct writing to filesystems.

Given the lack of ground-truth in this regard, it is difficult to ascertain whether the

takedown only affected a subset of the Dorkbot operation (i.e., upstream dropper

networks). In like manner, we see that Dorkbot also distributed a wide range of

downstream malware throughout the observation period. Again, one cannot see any

sign of diminished activity due to the takedown.

The Upatre operation also exhibits some interesting relational behaviours. In

particular, as Figure 5.5(a) shows, Upatre relies mostly on a few families in the first

half of the observation window, such as the amonetize PUP and gamarue mal-

ware. However, in the second half of the observation window, we see a significant

change in behaviour: Upatre shifts to a diversified, upstream dropper network, as

indicated by (i) a large increase in the total number of upstream families, and (ii) the

“top” families (e.g., loadmoney) accounting for only a small proportion of them.

Though it is unclear what caused this change in behaviour, I note that it occurred

from 14th April onwards – the same period Upatre began to use DGA download

servers (see Section 5.4.1.3).
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5.4.2.3 Distributed delivery tactics

Figure 5.6 shows distributed delivery metrics of each malware operation: the num-

bers of SHA-2s (either being downloaded, or downloading other files) associated

with varying numbers of URLs, e2LDs, and IPs. Again, we observe similarities in

the Dridex and Upatre operations, but considerably different characteristics in the

Dorkbot operation.

Starting with the bounded frequency plots of URLs per SHA-2 in Figure 5.6(a),

we see that almost all the download activities of the Dridex and Upatre SHA-2s

involve network activity, as indicated by the near-total overlap of the plot lines

for N = 0 and N = 1. This is in stark contrast to the Dorkbot malware, which

shows significant “gaps” between the N = 0 and N = 1 plot lines, indicating that

some files are not associated with any download URL. This could allude to Dorkbot

writing directly to the victim’s filesystem from the malicious process, as opposed

to initiating the download from an external server. This is consistent with malware

analysis reports, which identified spreading through USB flash drives as one of

Dorkbot’s infection vectors [13]. It is still possible, however unlikely, that this

discrepancy could be due to some measurement error in the data collection process.

Nonetheless, we see that SHA-2s being associated with multiple URLs is a common

occurrence for these malware operations (although relatively less common for the

Dorkbot operation).

Figure 5.6(b) shows the bounded frequency plots of e2LDs per SHA-2, while

Figure 5.6(c) shows IPs per SHA-2. Most of the Dridex malware is associated with

at least one e2LD or an IP, while up to 50-60% of its files are associated with 2+

e2LDs/IPs. It is particularly interesting to see that the highest proportion of files as-

sociated with multiple e2LDs/IPs occurred during the takedown period. Again, this

supports the notion that a concerted effort was made by Dridex operators to ramp up

malware activity during the sinkhole operation. The Upatre operation exhibits sig-

nificantly different characteristics: the proportion of its files that are associated with

1+ e2LDs/IPs is highly variable across the year. For instance, between 1st October–

24th December, there is a significant evolution in its delivery patterns: (i) a sudden
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Figure 5.7: Polymorphic characteristics: (a) # of active SHA-2s and SHA-2 churn; (b) #
of SHA-2s of size N+ KB; (c) # of SHA-2s with M+ malice score, where 0 �
M � 128; and (d) # of SHA-2s with P+ prevalence score, where 0 � P � 127.
N.B: malice and prevalence scores are assigned by Symantec security systems.

rise and fall in files associated with 1+ e2LDs, and (ii) at one point, the majority of

files having no traceable IP. It remains unclear why Symantec’s telemetry could not

detect IPs for these download events, or why these files were prominent only in the

early part of the observation window. Nonetheless, it is unlikely this was a random

occurrence, given these correlated behaviours around the time of the takedown. Fi-

nally, the Dorkbot malware exhibits much of the same delivery patterns as before:

a significant (but still minor) proportion of its files are not linked to any network

component. This alludes to some binaries writing directly onto victim filesystems.

5.4.2.4 Polymorphism

Figure 5.7 shows the polymorphic characteristics of each malware operation. The

number of active SHA-2s (or malware variants) and churn rates for each malware
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are shown in Figure 5.7(a). Clearly, each of the malware delivery operations makes

extensive use of polymorphism during the observation window. Furthermore, we

see that the active SHA-2 count of each malware evolves much like the network

dynamics of its respective delivery operation. For example, the active SHA-2 count

for the Dridex operation increases while the DNS sinkhole takes place, and falls

some months after; that of Upatre falls sharply after the arrest and seizure occurs

(although its network components behave very differently in the second half of

the observation window); that of the Dorkbot operation continues to fluctuate in

apparent immunity to its respective takedown. This correlation in SHA-2 count and

the number of network components used to deliver them (URLs, domains, IPs)7

could be the result of campaign IDs being hard-coded into each binary, being unique

to each upstream distributor. In this case, the binaries delivered by each distributor

would naturally have a different file hash. Looking at the churn rates, we see that all

of the operations exhibit high churn. Nonetheless, Dorkbot exhibits exceptionally

higher churn rates, where almost all its SHA-2s are replaced weekly.

Figure 5.7(b) shows the distribution of file sizes (in KB). We observe signifi-

cant variability in the sizes of each malware, although most SHA-2s are less than

326KB. It should be noted, however, a few binaries as large as 15MB were observed

in the data (particularly Upatre binaries). It is unclear whether this variability in file

size (or how much of it) is a result of some polymorphic technique (e.g., binary

padding), or if it’s simply due to additional functionality being coded into certain

versions of these malware.

Figure 5.7(c) shows the distribution of assigned malice scores, while Fig-

ure 5.7(d) shows the distribution of prevalence scores. It is interesting to see that

most Dridex and Upatre SHA-2s are assigned very high malice scores with very

low variance, while Dorkbot is assigned much more variable malice scores. This

suggests that Dorkbot was much more successful than the other malware at evading

detection systems such as Symantec and the other antivirus engines used to gener-

7Pearson’s and Spearman’s correlation coefficients were computed for SHA-2 count vs. URL
count over 1st October–14th April – the period for which these relationships are approximately
linear. (r,r) as follows: Dridex(0.93,0.93), Dorkbot(0.74,0.71), Upatre(0.99,0.93).
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ate these scores. Likewise, Dorkbot is generally assigned much lower prevalence

scores than the other malware. This indicates that the detection systems did not

observe Dorkbot malware as frequently at the time. This is most likely the result of

Dorkbot’s very high churn rate, which could also be a contributing factor to it being

assigned significantly lower malice scores.

5.4.3 Summary of Results
In this chapter, I presented a comprehensive analysis of the activities of three differ-

ent malware delivery operations, and how they evolved over a year in light of LEA

efforts to disrupt them. A summary of these observations is presented in Table 5.2.
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5.5 Discussion
In this study, I conducted a detailed analysis of the dynamics and behaviours of

three malware delivery operations over the course of a year. In this section, I take

a step back to consider the implications of these findings. Specifically, I identify

what security researchers and practitioners can learn from these observations, and

how these findings could be used to adopt additional mitigation strategies. I also

reflect on the limitations of this study, and opportunities for future work.

5.5.1 Lessons Learned

I uncovered a diversity of structural designs, behaviours, patterns, and responses to

takedown attempts in the studied operations. The common themes that recurred in

this study are as follows:

5.5.1.1 Distributed delivery architectures

All three operations made significant use of distributed delivery infrastructures:

Dridex used shared-hosting services and CDNs in up to 35 different countries;

Dorkbot constantly rotated between international servers; and Upatre heavily

used multi-region CDNs and cloud services (ymail.com, alfafile.net).

This has been observed of malicious file delivery operations in multiple stud-

ies [116, 137, 79, 194]. This makes effective server-based takedowns more difficult,

thus requiring greater coordination between LEAs, security companies, and service

providers on the Internet. Most especially, given that these service providers have

been so commonly abused, it is pertinent that they continue to step up their security

hygiene and coordination with other stakeholders to prevent cybercriminals from

abusing such platforms.

5.5.1.2 Polymorphism and Pareto’s principle

Polymorphism was rigorously employed by all three malware operations. However,

some malware binaries (Dridex, Upatre) were detected more frequently than others

(Dorkbot). One possible explanation for this is that a malware (such as Dorkbot)

that churns through binaries more frequently would be more difficult to detect in the

short-term. On the other hand, I laid bare manifestations of Pareto’s principle across
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all malware operations in that a minority of binaries were responsible for a majority

of downloads or dropping activities. Although detecting polymorphic malware will

be a continued challenge for the security community, this skewed distribution of

activity towards a minority of malware binaries could point to efforts in detection

being applied best in identifying these “super” binaries.

5.5.1.3 Takedown resilience

Each malware operation responded differently and showed some degree of re-

silience to takedown attempts. For instance, Upatre shifted to a more centralised

infrastructure over several months; Dridex significantly increased its activity during

the LEA takedown attempt; Dorkbot showed no significant changes, but continued

in it’s cyclic/stochastic behaviours and likely use of Fast Flux. In view of this, one

may ask the age-old question of whether botnet takedowns are actually effective?

Researchers have found that, historically, the success of botnet takedowns is highly

variable [188, 83]. Perhaps a more pertinent question to ask is whether botnet take-

downs are the only effective means to controlling malware delivery? Granted, there

are alternative takedown techniques that could also be employed, such as infiltrat-

ing botnet infrastructure and disrupting them from within [186, 33, 88]. However,

by viewing malware delivery as a supply chain problem, for example, the security

community may achieve more success by targeting other aspects of the malware

economy in parallel, such as by attacking the flow of money around malware de-

livery (the reliability of Dark markets, the process of monetising stolen data and

compromised devices, etc). It has also been argued [115] that the security com-

munity could seek to elicit more disruptive techniques from other fields of security

research. For example, frameworks such as Situational Crime Prevention [61] could

be adapted to derive countermeasures against botnet and malware delivery opera-

tions (see Table 6.4 in Section 6.4).

5.5.1.4 Predictable responses

Environmental criminology literature recognises several types of offender responses

to anti-crime interventions. These include (i) displacement – a change in an of-

fender’s behaviour to circumvent the intervention or seek out alternative targets or
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crime types [105]; (ii) adaptation – a longer term process of displacement whereby

the offender population as a whole discover new crime vulnerabilities and oppor-

tunities after an intervention has been in place for a while [85]; and (iii) defiance

– an increase in offender activity in retaliation to an intervention, usually when the

offender perceives the intervention as unjust or disproportionate [180]. Behaviours

such as these are usually expected and taken into account in the application of in-

terventions supported by environmental criminology. Similarly, in this study, I un-

covered some interesting responses by the malware operators to takedown efforts.

For instance, the Dridex operators significantly ramped up botnet activity during the

DNS sinkhole counter-operation, with an increased concentration of servers in the

US and UK. I noted that this was the second or third LEA counter-operation against

the Dridex botnet in as many months. Assuming this is linked to the attempted take-

downs, this is characteristic of defiant and displacing behaviours. Likewise, signifi-

cant changes in the Upatre infrastructure only a few months after the Dyre takedown

operation. Particularly, it shifted in its use of multi-region email services to more

centralised clusters of DGA servers and a single CDN (alfafile.net). Again,

this is characteristic of displacement, potentially to regain more control of the mal-

ware delivery process. As such, the main takeaway here is that, much like crime

in the physical world, reactions from the malware operators must be expected and

factored into any mitigation strategy against their operations. This highlights the

importance of two things: first, the continued monitoring and management of mal-

ware operations, before, during, and after any takedown attempt (e.g., assessing the

potential for unwanted side-effects [59], implementing action-research models for

botnet takedowns [115]); and second, the necessity for security researchers, com-

panies, and LEAs to disseminate information regarding botnet takedown attempts,

as this shared body of knowledge would better equip the security community to

implement effective countermeasures. Nonetheless, there is the argument that cy-

bercriminals could also learn how to make their operations more resilient through

this shared knowledge. This raises the question of how best such knowledge-sharing

could be implemented.
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5.5.1.5 Unpredictable responses

At the same time, I also denuded very aberrant and previously undocumented be-

haviours by each malware operation. For instance, though Dridex is a financial

fraud trojan and has been known to operate as a payload, it was seen to engage in

bursts of dropping activity, delivering downstream ransomware, backdoor malware,

and even competing families of financial fraud trojans! Dorkbot exhibited sudden

and sharp increases in downloads at the end of the observation period through up-

stream ruskill malware. Upatre suddenly and significantly increased in its use

of upstream malware droppers in the latter half of the observation period. Such

behaviours could be very difficult to predict, especially when monitoring malware

activity from a limited perspective (i.e., download traffic). As such, this highlights

the need for the security community to incorporate multiple data sources from dif-

ferent ecosystems to monitor botnet activity effectively. For instance, monitoring

download traffic (as in this study) could be complemented and correlated with other

intelligence sources, such as network traffic from ISPs, online discussions in social

media and web forums (Twitter, Reddit), as well as discussions and market activity

in the Dark Web. Potentially, using multiple perspectives could give researchers

more context and clarity regarding some of these observed behaviours, and, thus,

how to use this increased knowledge to disrupt botnets more effectively.

5.5.2 Limitations

This work builds on the data and techniques used in a previous measurement study

of the malicious file delivery ecosystem [116]. As such, the same data limitations

apply, such as the limited view one has on only one stage of the malware supply

chain (software download), or VirusTotal’s limited coverage in mappings between

file hashes and malware families. To mitigate the former issue, I used additional

data sources to provide as much context as possible (ground truth on the operations,

VirusTotal/AVClass/NSRL software labels, malware aliases, etc). To mitigate the

latter issue, I collected VirusTotal labels for a period of three years after the initial

observations, maximising positive predictive capability. It is still possible that some

files were mislabelled with the wrong malware family, which would mean that the
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time series analytics is unrepresentative of the given family. However, I suspect

such cases would be few given the reported accuracy of the classifier [177].

A major part of this study involved analysing malware delivery operations that

were subject (or in the case of Upatre, linked) to a takedown attempt. However, a

number of challenges arise. One challenge relates to the fact that ground truth on

takedown operations is usually scarce. This was the case with the operations stud-

ied herein. As such, this study is limited regarding the specifics of each takedown

operation, and finding parallels in the data. More generally, and as a result of this

general lack of ground truth data on takedown operations, this study was scoped

as a measurement study of global malware activity. This means that one is only

able to observe and evaluate the overall structure and activities of each malware

operation but cannot do more than speculate why such phenomena occur, nor can

one isolate observable effects to the specific parts of each infrastructure that were

targeted for takedown. In light of this challenge, one interesting extension to this

work could be the use of a causal inference framework to analyse the effects of take-

down attempts on different aspects of each malware operation (aggregate network

and download activity, distributed delivery, etc), as well as the wider malicious file

delivery ecosystem. Alternatively, causal relationships could be uncovered more

directly with additional ground truth on the specifics of each takedown operation.

Another, more general challenge is the issue of survivorship bias. In the context

of this work, this refers to the biases that arise out of the fact that certain char-

acteristics of the studied botnets would make them more likely to be targeted for

takedown than other botnets. Such biases ultimately threaten the external validity

of these findings (i.e., how well they apply to other botnets, particularly those not

targeted for takedowns).

Finally, on the topic of understanding the behaviours of the malware operators,

it is also worth noting that one could only observe spatial displacement in this study

(i.e., an operator moving from one set of upstream servers and dropper networks

to another). The methodology could be extended to include ecosystem dynamics
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that could allow one to observe offender displacement (i.e., a malicious operator

replacing another’s use of upstream delivery infrastructure).

5.6 Conclusion
In this study, I tracked and analysed three different malware delivery operations

over the course of a year, studying the dynamics of their upstream servers and drop-

per networks. Through time series analysis, I studied the different facets of each

operation and how they evolved over time in light of the law enforcement efforts

to disrupt them. I made a number of key findings – mainly, the tendency of mal-

ware operators to move their operations elsewhere after a takedown, or in one case,

to openly defy it. I also found the use of distributed delivery architectures (par-

ticularly CDNs) and the heavy reliance on a few “super binaries” to be common

by the studied malware operators. These observations give the security community

deeper insight into the complexities of malware delivery and ought to be factored

into future takedown strategies.
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Chapter 6

Bridging Information Security and

Environmental Criminology

Research to Better Mitigate

Cybercrime

In this chapter, we take a step back to review the cyberthreat landscape as a whole

and take stock of the countermeasures used to date in the hopes of deriving better

and more holistic ones. To this end, I present a review of the cybercrime literature

from two distinct perspectives: the information security perspective and the envi-

ronmental criminology one. This work was undertaken as part of a collaborative

project with Dawes Centre for Future Crime at UCL. A pre-print of this work is

publicly available: ‘Bridging Information Security and Environmental Criminology

Research to Better Mitigate Cybercrime.’

6.1 Introduction
Society and digital technology have become inseparable. The most developed

countries are on the verge of true digitisation: the Internet of Things (IoT),

driverless vehicles, and smart cities [221], while even in the poorest of soci-

eties, mobile technologies are becoming ubiquitous [23]. The Internet (or cy-

berspace) has been described as a ‘real virtuality’ [51]: an interactional environ-



ment that is rooted in the real world but transcends its spatial and temporal re-

strictions [219, 139, 203, 78, 209]. As a result, having a “digital identity”, “going

online”, or “surfing the web” are no longer mere adages, but common, everyday

realities. Now, communities and social networks can be globalised, giving us the

ability to communicate in real-time and to meet in this virtual world. Indeed, our

relationships, our activities, and our information are held in “cyberplaces”, and not

just cyberspace [210].

However, this entrenched influence that digital information now wields over

society has also created new opportunities for the cybercriminal economy, which

has already proven to be transnational, organised, and incredibly innovative. From

the factory of spam and phishing emails [136, 188, 141, 134, 140] to meticulously

planned romance scams [45, 211, 84, 112] and advanced-fee fraud [144, 103], iden-

tity theft, cyber fraud, and financial crimes are just some of the profitable avenues

for the aspiring cybercriminal. Anonymous marketplaces and underground cha-

trooms are diversifying [80, 185], facilitating the trade of illegal goods and ser-

vices (drugs, weapons, child sexual abuse images, etc) with the added benefits

and protection of cryptocurrencies and escrow services [43, 146, 110]. Perhaps

most devastatingly, such services have enabled the cybercrime economy to become

increasingly organised, with cybercriminals regularly trading services with each

other [183, 57, 104, 192]. The malware economy is just one manifestation of these

rapid developments: growing from a “cottage industry” with a few, highly skilled

individuals, to a massive and well-oiled criminal business, and constantly being

refined, with wave after wave of new distribution vectors and attack patterns.

The interest in cybercrime prevention is profound. The information security

field, which naturally has a strong technical focus, has been studying cybercrime

and devising countermeasures since its inception. On the other hand, the environ-

mental criminology field, which is multidisciplinary at heart and focused on tra-

ditional crime prevention based on traditional crime, has been comparatively slow

in its reaction to cybercrime. There have been successes in crime prevention in

these respective fields, but keeping up with cybercriminals has proven to be an arms
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race. Furthermore, as I noted in Sections 1.2 and 2.7, little collaborative or inter-

disciplinary work between these two fields has been carried out. To keep up with

cybercriminals, there is a pressing need for greater coordination and collaboration

amongst computer security researchers and criminologists, among others, to better

mitigate cybercrime.

In this study, I argue that combining contributions from information security

and environmental criminology would benefit cybercrime research significantly,

both to systematise past research efforts better and to identify promising future di-

rections that draw from literature in both fields. To this end, I conduct a review

of cybercrime literature from the perspectives of information security and environ-

mental criminology, drawing parallels between these two distinct fields and elicit-

ing how theories and frameworks from one map to research in the other. In this

juxtaposition, I identify examples and opportunities for new cybercrime interven-

tions by applying theoretical models from environmental criminology to informa-

tion security research. These models also serve as a basis to help system designers

evaluate whether their plans for defending the system have taken advantage of all

techniques available, particularly for complex socio-technical systems which are

poorly handled by existing IT-focused security standards. Finally, in arguing the

need for a new and complementary research direction that combines contributions

from information security and environmental criminology to mitigate cybercrime

more effectively, I initiate this process in earnest: I discuss the concept of ‘place’

(amongst other core concepts relating to physical crime) and how I may define the

analogous concept of ‘cyberplace’ for cybercrime. Ultimately, this would aid the

transfer and adaptation of crime prevention frameworks to the context of cybercrime

so as to provide a new outlook towards fighting it. My hope is that future thought

and collaboration in this area would help the device of more effective cybercrime

prevention strategies.

In summary, this study makes the following contributions:

• I present an overview of environmental criminology research and how the

concepts presented in this area have been applied against cybercrime.
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• I present a survey of cybercrime research from computer scientists, drawing

parallels between the proposed mitigations and well established environmen-

tal criminology paradigms. To the best of my knowledge, this is the first study

to draw from a wide range of literature and make these parallels explicit.

• I set the groundwork for future research directions that could see fruitful col-

laborations between the two areas. To this end, first, I propose some new cy-

bercrime countermeasures using environmental criminology. This includes a

framework for disrupting malware delivery and botnet operations using Situ-

ational crime prevention. Again, to the best of my knowledge, no such frame-

works have ever before been propositioned.

• Second, I consider what ‘place’ means for cybercrime (amongst other funda-

mental concepts such as space-time, offender behaviours, and guardianship)

and propose a new conceptualisation of ‘cyberplace,’ which combines three

fundamental components: location, state, and function. I then present some

motivating examples of how this concept could be used to derive new meth-

ods of cybercrime analysis and mitigations, including the facilitation of envi-

ronmental criminology techniques for cybercrime. I argue that this concept

could be applied and developed to identify cyberplaces (websites, services,

software) that are at an elevated risk of attracting cybercriminal activity, and,

thus, help system designers prioritise them better for preventative measures.

This is the first study to define ‘cyberplace’ in this way for (but not limited

to) the context of cybercrime.

The rest of the chapter is structured as follows. In Section 6.2, I will review

the evolution of theories and practices in environmental criminology literature and

how they may be applied to cybercrime. In Section 6.3, I will evaluate the core

concepts of environmental criminology and how they translate to cyberspace and

cybercrime. In Section 6.4, I will present an overview of the cyber threat land-

scape from the information security perspective. I will then evaluate their mitiga-

tions against cybercrime while highlighting some similarities in their approaches
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with environmental criminology practices. I will end this section by considering

some new, potential mitigations against cybercrime using environmental criminol-

ogy. In Section 6.5, I propose a new conceptualisation of ‘cyberplace’ by (1) using

an inductive approach to establish examples of ‘place’ contexts through a survey

of cybercrimes (Section 6.5.1), and (2) considering what ‘place’ means in the real

world (Section 6.5.2). I will then present some examples of how cyberplaces may

later be classified in order to better analyse and mitigate cybercrime (Section 6.5.3).

Finally, I will end the chapter with concluding remarks in Section 6.6.

6.2 The Evolution of Place-Based Theories and Prac-

tices in Environmental Criminology
In this section, I first explain why environmental criminology is an appropriate field

of choice in furthering the security community’s approach to mitigating cybercrime.

I then assess the concept of ‘place’ in environmental criminology theories and prac-

tices and how its role has evolved over time. Finally, I juxtapose the applications of

these theories and practices between physical crime and digital crime.

6.2.1 Why Environmental Criminology?

Before exploring the connections between environmental criminology, information

security, and their perspectives on cybercrime, one may be considering at this point,

“why environmental criminology?” That is, why should we consider this approach

in dealing with cybercrime, in association with current information security efforts,

and why not, for instance, other criminology subfields, or criminology as a whole?

Criminology is a broad and interdisciplinary field in the behavioural and so-

cial sciences, drawing primarily upon the research of sociologists, philosophers,

psychologists, social anthropologists, biologists, and scholars of law. Criminology

possesses an equally broad variety of theories towards understanding crime. Clas-

sical criminology emphasises on the sociological, anthropological, and biological

factors affecting one’s propensity towards committing crime. On the other hand,

environmental criminology is a unique subfield in that, besides its application of the

127



scientific method to examine crime, it draws focus on the (previously overlooked)

environmental and circumstantial factors that create criminal opportunity, rather

than purely focusing on the individual characteristics alluding to the “criminal pro-

file.” In this regard, environmental criminology draws on research from a broader

range of technical fields, from geography and economics to computer science and

mathematics, to focus on and assess the proximal (rather than distal) aspects of a

crime event that explain why it occurs, thus pointing to how it could be deterred.

Environmental criminology, therefore, manages to elucidate how and why crime is

not bounded to only those who “fit the criminal profile,” but can be committed by

any member of society, and why one may be found to commit a crime that others

would deem contrary to their disposition or “character.” Crime science [67] is an

evolved field of environmental criminology with the principle focus on controlling

crime and reducing “harm.” Because of this relationship between the two fields, I

will generally focus on the role of environmental criminology for the remainder of

this paper, considering crime science as its natural symbiote.

Returning to criminology, and looking at the dimension of efficiency, classical

criminology approaches lead to a heavy reliance on the judicial and penal systems

to inhibit crime, through deterrence, punishment, and rehabilitation. Though such

are likely necessary for society, they are, nonetheless, flawed as a sole solution.

First, there is the attrition of justice: ever-diminishing proportions of offenders are

successfully reported, then arrested, then indicted, then imprisoned, and then re-

habilitated [94]. Therefore, the majority of offenders remain within or are rein-

troduced into wider society with little to no lasting, positive change. However,

environmental criminology takes a pragmatic approach from the outset. With the

primary focus on pre-empting and preventing crimes before they occur, this ap-

proach favours manipulating the immediate environment so as to deter one from

committing a crime, such as by increasing the perceived risks or costs, reducing

the perceived rewards or provocations, or removing the excuses associated with the

commission of a crime [63]. In essence, this approach aims to reduce criminal

opportunity for potential offenders.
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Finally, the environmental criminological approach favours direct and practical

methods, techniques, and technologies over purely theoretical discourse. Improve-

ments in modern technology have resulted in the development of a number of crime

analysis techniques (e.g., crime scripting [71], agent-based modelling [34], geo-

graphic profiling [171]), crime prevention techniques (e.g., situational crime pre-

vention [63], crime prevention through environmental/urban design [121, 156]), and

tools (e.g., digitised crime mapping systems and hot spot policing [82]). With this

constant evolution alongside modern technology, it is no wonder that environmental

criminologists have begun to shift their focus towards crimes committed using com-

puter systems and the Internet. Given the similar focus held by information security

researchers on mitigating cybercrime, it is equally unsurprising that these two fields

could serve to complement each other in achieving this shared goal.

Criticisms and Challenges

The field of environmental criminology does not come without its criticisms. One

common and often argued criticism of the field is that crime interventions derived

from it do not lead to an overall reduction in crime – they only cause crime to

move elsewhere. This side-effect of crime intervention is a phenomenon known as

displacement. However, most displacement research has found that displacement is

far from an inevitable side-effect of crime intervention. Instead, crime interventions

have been generally found to deliver net benefits with reduced crime [122].

More generally and as summarised by Wortley and Tilley [216], one of the

main criticisms of environmental criminology is that it ignores the “root causes” of

crime. As such, prevention efforts based on this approach are often characterised as

only catching the “low-hanging fruit.” Wortley and Tilley argue (as we will find in

the review of the relevant theories and practices of environmental criminology) that

human behaviour – and hence criminal behaviour – is by its very nature situational

and intricately linked with the immediate environment. As such, the immediate

situational and environmental aspects of a crime event are root causes of the crime

themselves. With that being said, the proposition of environmental criminology is

not to be a comprehensive solution to all crime – crime in itself is a highly complex
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Figure 6.1: The evolution of environmental criminology.

phenomenon. Rather, as in its designation, it is designed to tackle the immediate

environmental aspects that can lead to crime so as to control it.

One may also consider what benefit is there in investing in interdisciplinary

research efforts between two fields that already share a similar focus (information

security and environmental criminology). As I will show in later sections, the main

benefit of a unified approach between the two fields, I believe, is the added structure

and systematisation to the processes of devising, implementing, and monitoring

cybersecurity mitigations. In essence, my argument is that the crime prevention

theories and practices of environmental criminology may be extended to supplement

the techniques already applied in information security.

6.2.2 Theories within Environmental Criminology

The foundation of environmental criminology (i.e., the study of crime, criminality,

and victimisation) has a primary emphasis on the specific places and times where

and when crime events occur. In environmental criminology, it is theorised that the

characteristics of the immediate environment have a significant effect on whether a

potential offender commits a crime or not. These environmental features are greater

emphasised than other (distal) factors that are typically proposed within classical
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criminology theory, such as the anthropological or neurological characteristics of

“deviant” offenders.

I will review a condensed background of the concept of ‘place’ in environmen-

tal criminology, and how its role within this field has evolved over time. Figure 6.1

summarises this evolution of environmental criminology.

6.2.2.1 Early studies

The idea that crime is non-uniformly distributed in space is not new. In fact, crimi-

nology research on these premises stretches back to almost 200 years, ranging from

studies by Guerry [99], Quetelet [166], and Glyde [95] on early crime mapping and

statistical applications to the social sciences, to works by Burgess [46] and Shaw

and McKay [179] on the links between juvenile delinquency in urban areas and so-

cial disorganisation theory. A common thread within these works is the recognition

of the fact that, with regards to areas and locations, crime does not occur uniformly.

Instead, crime is heterogeneous in space.

Moving forward to the 1970s and 80s, environmental criminology called for

a shift in focus on the specific places where crimes occur over other situational

factors, such as the motivations of the offender, or the exploitability of the victims

and/or targets of crime. Simply put, the “where” of crime was considered as or

more important than the “who” or the “what” of crime. This led to the emergence

of several fundamental environmental theories to explain crime, which, I believe,

are better suited to mitigate new forms of crime, such as cybercrime.

6.2.2.2 Crime prevention through environmental design

Jeffery [120] coined and formulated this term, often abbreviated as CPTED. The

CPTED concept is simple: just as buildings and properties are designed to prevent

damage from the forces of the elements, they should also be designed to deter and

prevent crime. Such techniques include, for example, using a single, clearly notable

point of entry to a private property to enable easy access control, or making com-

munal areas highly visible to enable natural surveillance by its residents. Around

the same time, Newman [156] developed Crime Prevention Through Urban Design

(CPTUD) and the concept of defensible space: a model of residential environments
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that exhibit territorial behaviours and senses of community to deter criminal activ-

ity within them. Ultimately, this model aims to provide perceptible cues to poten-

tial offenders that these areas are defensible (clearly bounded, regularly monitored,

limited escape routes, territorial residents and users, etc) and, thus, unconducive to

crime. Some argue that CPTUD could be interpreted as an application of CPTED

through a subset of its dimensions [121, 26].

There are six key principles of CPTED, which, in varying degrees, are also

relevant to cybercrime:

1. Territoriality: people tend to lay claim over an area that they have some form

of ownership and will defend them against intrusion. Similarly, in the cyber

context, people employ various methods of control over their computer sys-

tems, accounts, and websites to prevent unauthorised access (e.g., the use of

passwords and security protocols) or to prevent malicious behaviours within

them by enforcing terms of conditions for their users.

2. Surveillance: architectural designs that encourage residents to inhabit and in-

teract with public spaces are more likely to deter criminal behaviour, such as

by implementing increased lighting and unobstructed lines of sight. The con-

cept of natural surveillance (as well as collective guardianship), is also useful

in cyberspace. Particularly within social networks, forums, and e-commerce

websites, members of these services can flag inappropriate or illegal content

(and their users) for removal and can report software bugs in these services.

3. Target hardening: one may implement physical barriers (fences, gates,

locks) to inhibit forced entry. In a digital sense, this maps to the use of au-

thentication (password-protection, cryptography) and security technologies

(antivirus, antimalware, firewalls, intrusion detection/prevention systems),

and security personnel (network administrators, security analysts), which in-

creases the difficulty for threat actors to compromise a service, system, or

network.
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4. Access control: one may deter criminal activity by defining site boundaries

(fences, hedges), limiting access to a single point of entry or exit, implement-

ing security systems and personnel, or guiding movement through a site. In

cyberspace, this could involve the use of various authentication and security

technologies as in target hardening, or utilising control flow integrity [20] and

user experience (UX) design techniques.

5. Maintenance: a well-maintained site sends a signal to outsiders that people

notice and care about what happens in the area, while those that are not well-

maintained are more likely to entice vandalism, and, consequently, higher

levels of crime (‘Broken Windows’ theory [213]). This principle is also rel-

evant in the context of cybercrime. For instance, websites that are regularly

monitored may be less desirable avenues for posting malicious or illegal con-

tent. Software that is regularly patched may be a more difficult target for

attackers to exploit.

6. Activity support: providing clear signage on what are acceptable and un-

acceptable behaviours within a site can encourage expected patterns of use

within it, e.g., including ‘entrance’ and ‘exit’ signs, or notices of criminal

prosecution against malefactors. Likewise, shared services and websites that

enforce terms and conditions (no hate speech, spam, or malicious hyperlinks,

etc) are likely to encourage compliant behaviour (at least from real users) and

discourage inappropriate ones.

CPTE/UD are a subset of the more general Design Against Crime (DAC) prin-

ciples, as proposed by Poyner [164], which also includes crime prevention through

product design [65]. On reflection, one may find that there are similarities between

these crime prevention approaches and the security-focused design and maintenance

procedures in systems security, such as the various levels of application security (se-

cure coding, secure operating systems), system security (firewalls, antivirus, and an-

timalware software), and network security (intrusion detection/prevention systems,

security information and event management systems). However, in CPTE/UD,
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there is also a clear focus on empowering communities to deter criminal behaviour

in their locales. Though one may argue that the use of computers is much more

solitary than interacting in the real world, in actuality, as highlighted by other re-

searchers [209, 210, 195], there is a great degree of online community in various

forms, such as the shared use of computers and networks, software applications,

forums, social networking, and e-commerce sites. Thus, these principles could be

adapted to harness the power of online communities so as to prevent malicious be-

haviours within them.

6.2.2.3 Situational crime prevention

Following the works of CPTE/UD [120, 156], and the successes of their imple-

mented interventions, Clarke [60] argued for a situational approach to crime pre-

vention. This approach is premised on offenders being rational actors, and that their

choices and decisions towards crime are influenced by the characteristics of their

immediate environment. For instance, a window regularly being left open could

influence the commission of a burglary on that property, whereas a visibly secure

property would be more likely to deter such a crime. Over time, and after some

literary discourse [215], Cornish and Clarke updated the situational crime preven-

tion (SCP) framework to establish 25 techniques [73]. The SCP framework can be

summarised under five categories of techniques to deter potential offenders from

initiating a crime event:

1. Increase the perceived effort. Physically, this includes the use of site se-

curity to deter offenders, while for cybercrime, this could involve automat-

ically patching software and utilising application and network firewalls to

deter hackers and malware.

2. Increase the perceived risks. Mitigations include implementing CCTV

surveillance, or, for cybercrime, employing identification checks for money

transfer services or de-anonymising cryptocurrency transactions.

3. Reduce the anticipated rewards. Examples of these mitigations include anti-

theft mobile apps that can lock phones remotely. For mitigating cybercrime,
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this includes using system backup policies to empower ransomware victims

against complying to criminal demands, or using digital watermarking to de-

tect piracy.

4. Reduce the provocations. This categority includes crowd control measures

at venues to minimise stress and prevent altercations, or, in the digital sense,

swiftly detecting and removing abusive and illicit content (which could breed

further illegal activity) using automated filters and user reporting procedures.

5. Remove the excuses for crime. Examples include displaying roadside speed

signs or using breathalysers in pubs, whereas for cybercrime, mitigations

include displaying and enforcing stricter rules for social networking and e-

commerce sites to discourage offensive and illegal behaviours.

Though this framework was developed predominantly for urban crime, it has

shown to be useful in a wide variety of crime scenarios. For example, one adapta-

tion has been made for counter-terrorism purposes [64], which maps the five types

of SCP techniques across four necessary components of terrorism (targets, tools,

weapons, facilitating conditions), generating a lattice of potential mitigations. Be-

sides applying the 25 SCP techniques to various types of cybercrime, future research

could go into developing customised frameworks for each type of cybercriminal op-

eration, such as further adapting the counter-terrorism variant of SCP towards mit-

igating cyberterrorism (hacktivism, denial of service attacks) or malware delivery

operations.

There are two potential effects of an intervention that are also the main crit-

icisms of SCP [167, 93]: crime displacement and crime adaptation. Crime dis-

placement involves the movement of crime (i.e., in space, time, modus operandi

(MO), crime type, or the perpetrators and/or targets involved) as a direct result of a

crime intervention. Cornish and Clarke [72] use rational choice theory to attempt to

explain this phenomenon. Crime adaptation involves offenders learning of an inter-

vention and adapting their techniques or MOs in order to bypass that intervention

and commit the same crime. These crime phenomena could be of particular impor-
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tance to cybercrime, as the ability of cybercriminals to move their operations else-

where is effectively “free,” in comparison to criminal operations in the real world,

which can be more challenging. For instance, once a server being used for spam

or other malicious activities is blacklisted, the operator could just change its IP ad-

dress or domain name to circumvent this blacklist and continue their operations.

Moreover, though there is a wide variance in their skill sets, some cybercriminals

actively seek to beat the best cybersecurity defences and identify new ways to get

around them (e.g., zero-day exploits, anti-analysis functionalities such as polymor-

phism and VM detection in malware). Therefore, it is even more important to devise

interventions that are difficult to circumvent, or that would at least reduce the profits

or increase the efforts and/or risks for cybercriminals who would do so.

6.2.2.4 Routine activity theory

Cohen and Felson [68] proposed this theory as a macro-level explanation for crime

rate changes in the United States between 1947 and 1974. This theory states that

crime is less affected by (traditionally postulated) social causes, such as poverty,

inequality, or unemployment, but more so by the immediate opportunity for one to

commit a crime. In essence, they propose that “crime follows opportunity.” That

is, as more opportunities for crime arise, more crimes will occur. The core of this

theory postulates that for (direct-contact predatory) crime to occur, three necessary

components must physically converge in time and space: (i) a motivated offender,

(ii) a suitable target, and (iii) the absence of a capable guardian (or some other con-

troller, such as one who can handle the offender, or a place manager). In the real

world, this could be exemplified by sexual assaults being more common at night as

either the offender or the victim (or both) is more likely to be intoxicated and as

there are fewer people out in public to deter them [77]. The same principle seems

to apply in the cyber world. For example, studies have shown that botnet activi-

ties peak during the day and drop off at night [187], while most malware delivery

is carried out on weekdays rather than weekends [116] – this is in line with when

computers are used most often, which is usually for work. Cyberharassment and

cyberbullying can only occur when the victims “come online” or access peer-to-
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Figure 6.2: The ‘crime triangle’ of routine activity theory.

peer services (online forums, email services, social network sites, messenger apps).

Hackers and their malware can only infiltrate a target system when it becomes avail-

able through a connecting medium (e.g., the Internet, a drive-by download on a

website, downloading an email attachment, or accessing an infected USB device).

Over time, this simple but powerful trifactorial relationship has come to be

known as the Crime Triangle (Figure 6.2), and is a key component of environmen-

tal criminology. Cohen and Felson also identify that most predatory crimes involve

rational decision-making by the offender, particularly in qualifying “suitable” tar-

gets. With this premise in mind, they introduce the VIVA model (Value, Inertia,

Visibility, and Accessibility) to explain how offenders qualify and select victims

and targets, and how altering such dimensions could affect their perceived suitabil-

ity for victimisation from the perspectives of these offenders. Alternative models

have also been proposed, such as CRAVED (Concealable, Removable, Available,

Value, Enjoyable, and Disposable), which is specifically designed for theft targets,

or “hot products” [65]. As routine activity theory is core to environmental criminol-

ogy, I will revisit the fundamental concepts of space and time, offender behaviours,

guardianship, and how offenders identify suitable targets, and explore how these

concepts apply in cyberspace and within cybercrime (Section 6.3).

6.2.2.5 Geometric theory of crime

Building on routine activity theory, Brantingham and Brantingham [38] focus on the

spatio-temporal relationship of crime. To elaborate, just as crime is non-uniformly

distributed in space, it is also non-uniformly distributed in time. This theory ac-
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counts for “peaks” and “troughs” in criminal activity across different geographical

areas and places. The authors also identify a further three dimensions in understand-

ing crime: the legal dimension (the creation, perception, and governing of laws); the

offender dimension (the motivations of the offender and how they vary in time); and

the victim dimension (why offenders select certain targets).

Going further, Brantingham and Brantingham [39] attempt to account for the

non-uniformity and non-randomness of crime in their Geometric Theory of Crime.

This work focuses on the urban landscape, theorising that an offender, just like

non-offenders, will spend most of their time engaging in normal routines of non-

criminal activity. It is through these routine activities that an offender develops

their “personal awareness space”, i.e., the areas and routes with which they are

most familiar. It is theorised that when these awareness spaces intersect with the

activity spaces of victims, it is in these areas that offenders conduct most of their

criminal activity. The authors explain this theory by discretising the real world into

(i) nodes: places which are central to the lives of people, and to and from which they

travel (e.g., shops, schools, workplaces) – offenders tend to search for opportunities

here; (ii) paths: routes that link nodes – people are often victimised along paths; and

(iii) edges: physical and/or perceptual boundaries (e.g., rivers, major arterial roads)

that separate distinguishably different areas – “outsiders” tend to commit crimes

at these boundaries, while “insiders” tend to commit crimes within the bounded

areas [41, 37].

The relationship between this theory and the activities in cyberspace is inter-

esting. As I discuss further in Section 6.3.1, cyberspace is very different in its

construction as compared to the real world: it is highly discretised (as opposed to

the contiguity of physical space), with transitions between one online site to another

being almost instantaneous. In this regard, the concept of victimisation occurring

more along paths would need revision. However, it can be understood that online

users form their own awareness spaces in cyberspace, based on the websites that

they frequent and the services that they use. In turn, this familiarity may indeed

reduce the perceived risks of using such services by these users (such as the con-
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tinued use of illegal streaming and piracy sites), while also allowing cybercriminals

to identify suitable attack vectors (e.g., vulnerabilities in a website) and targets

(e.g., vulnerable users to socially engineer). This concept of awareness space is

also comparable to the ‘reconnaissance’ stage of the Cyber Kill Chain [114] model,

such as when crawler bots scrape websites for email addresses, or when malware

scans nearby devices for vulnerabilities.

6.2.2.6 Rational choice theory

For several years, rational decision-making had been a given assumption in mod-

elling offender behaviours (e.g., situational crime prevention, routine activity the-

ory). However, Clarke and Webb [62] formally proposed the Rational Choice The-

ory in 1985 to evaluate this proposition. By viewing different crime events in terms

of (perceived) opportunity, costs, and benefits, this theory provides a possible ex-

planation as to why and how offenders make rational decisions towards committing

crime, as well as what may prevent such decisions from being made. This theory

makes sense with physical crime, but perhaps even more so in the case of cyber-

crime. That is, there is a considerable rational element that may motivate one to

commit a crime in the real world. However, other non-cognitive factors lead to a

crime event, such as the immediate stresses, pressures, or prompting cues [215] that

can, for example, spark an altercation in a bar, which may ultimately lead to an

aggravated assault or even manslaughter. But, when we consider cybercrime, how

these “situational precipitators” affect decision-making is not as clearly understood.

Granted, the commission of a wide range of cybercrimes may require skill, moti-

vation, and careful thought. For instance, it is probably far-fetched to identify a

complex ransomware operation, spanning several weeks of activity, as a “spur-of-

the-moment” assault.

Nonetheless, there are examples of cybercrimes that may be committed with-

out prior intention, or even the knowledge that they are crimes. For example, one’s

participation in a heated online argument, or their reaction to an emotive piece of

news, could quickly escalate to online abuse or cyberharassment. A user may stum-

ble upon a bug in a website, and, instead of reporting it to the site owners, may
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be tempted to see to what end exploiting that bug may lead, e.g., accessing ac-

counts that had just had their credentials leaked in plaintext. Even hackers, though

they may be considered as skilled and rational actors, may not always be aware of

the criminality of some of their actions in cyberspace, thus, failing to distinguish

between that which is lawful and that which is not.

6.2.2.7 Crime pattern theory and repeat victimisation

The links between routine activity theory, the geometric theory of crime, and ra-

tional choice theory are apparent. Brantingham and Brantingham [40] attempted

to leverage these links and synthesise these theories within Crime Pattern Theory.

Through this theory, criminologists and crime scientists have been able to explain

why crime occurs in certain areas, based on the intersecting activity spaces of of-

fenders and their victims or targets. This theory classifies three types of crime

hotspots [37]: crime attractors, which are places that are well-known to offend-

ers for illegal activity and abundance in criminal opportunity, such as bars and

nightclubs; crime generators, which are places that attract large crowds of people

and where, being amongst them, offenders become aware of criminal opportunities

there, such as shopping malls, schools, and entertainment venues; and crime en-

ablers, which are places that facilitate crime due to their lack of place management,

such as public parks and parking lots.

Repeat victimisation is a specific type of crime pattern, relating to the height-

ened risk of a victimised individual, demographic, property, or location, to being

victimised again [89]. For example, the vast majority of homes remain unburgled

while a minority of homes suffer multiple burglaries in a year. This increased risk

of victimisation can be understood by the “flag” explanation, which relates to the

characteristics of the victim or target that make them desirable to offenders (e.g., a

home with broken locks or overgrown bushes blocking public visibility), or by the

“boost” explanation, which relates to the role of repeat offenders in these crimes

(e.g., a burglar identifying when a home is vacant, or learning techniques to over-

come a security system) [161, 28]. The problem of repeat victimisation is that it is a

concentration of a majority of crimes involving only a few victims and targets, and
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being commissioned by a few offenders. As is the case with crime displacement,

there are a number of factors that could cause this increased concentration of crime,

such as geography (i.e., crime hotspots), types of (risky) locations (e.g., shopping

malls, schools), the availability of targets (i.e., “hot products”), or the presence

of repeat offenders or chronic victims. Besides the same people being repeatedly

victimised, there are also near-repeat victims, who are different victims to the same

(or similar) crime with some similarity to the initial victim (e.g., houses near to the

one that was burgled are more likely to suffer a burglary than those further away).

There are many examples of crime patterns also occurring in cyberspace (Table 6.1).
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6.2.3 Practices of Environmental Criminology
I have already reviewed some theoretical models and how they can be used to anal-

yse various crime types. In this section, I will cover some of the practical applica-

tions of these theories.

6.2.3.1 Action research models

There are several systematic processes and risk management frameworks that have

been used to implement crime prevention in a variety of public and private contexts

(e.g., SARA [81], the 5Is [86], ISO 310001). However, as other researchers [63,

100] describe, the common thread between these different approaches is that they

are action research models, allowing researchers and practitioners to work together

to:

1. analyse and define the problem, the ecosystem, and the relevant stakeholders

(e.g., a shared computer, its programs, and its users),

2. analyse the situational conditions that permit or facilitate the crime event un-

der study (e.g., infected app, malvertisement/drive-by, or socially engineered

download),

3. identify, evaluate, and implement potential countermeasures (e.g., block

third-party/untrusted apps by default, regular software updates, email “safe

links”, online safety reminders), and

4. assess the effects of these measures (e.g., diagnostics, user feedback), reiter-

ating as necessary.

One can identify system vulnerabilities (such as for an OS environment, or a

sociotechnical system) using the risk management variant of this approach, chiefly

by identifying the parameters of a “good” system state, the goals and assets of the

relevant stakeholders, and triggering events (criminal or mistaken) that counteract

these goals as deviations from this state. Islam et al. [118] propose such a frame-

work for reducing human-related risks in sociotechnical systems.
1
https://www.iso.org/iso-31000-risk-management.html
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Table 6.2 shows some examples of action research applied to real crime prob-

lems.

6.2.3.2 Hotspot policing

Hotspot policing [82], which is based on crime pattern theory, involves constantly

developing models of crime “hotspots” (points, streets, areas, chronic victims) and

focusing law enforcement resources around them to efficiently deter crime. This

approach makes sense, as focusing limited resources on the biggest sources of crime

is likely to reap the most benefit overall. As I discuss later, this could also be applied

to focusing resources on cyberplaces (websites, services, applications, etc) at an

elevated risk of malicious activity (see Section 6.5).

6.2.3.3 Geographic profiling

Geographic profiling [171] is an investigative technique to locate a serious of-

fender’s “anchor point” (e.g., their home or workplace), by connecting the loca-

tions of a series of crime events. This approach is similar to the clustering tech-

niques developed by researchers [146, 101] that can (to some extent) de-anonymise

the operators of Bitcoin transactions involving illegal activity, or the techniques that

can be used to carry out traffic correlation [149] and de-anonymise Tor2 users.

6.2.3.4 Crime scripting

Crime scripting [71] is an analytical technique that is used to extrapolate the se-

quence of steps an offender may take to commit a criminal offence. For example,

in a romance scam, fraudsters create a fake account on a dating service, they iden-

tify a suitable victim, they go through a grooming phase, followed by the actual

fraud when the scammer asks their victim for money. Dissecting the various steps

of an offence can be useful to better understand it and to identify potential interven-

tions. The Cyber Kill Chain [114] is a crime script example that is already used for

analysing system intrusions.

2
https://www.torproject.org/
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6.2.3.5 Agent-based modelling

Agent-based modelling [34] (ABM) is a class of computational models that can

be used to simulate an environment and assess how different actors interact with

it and with each other. It is an analytical technique that is widely used in biology,

sociology, computer science, and criminology. Researchers [35] have used ABM to

model malware activities in heterogeneous environments.

6.3 Adapting Environmental Criminology Concepts

for Cyberspace

As I have shown, the environment is a crucial element to crime in the physical world.

For direct-contact crimes, it is imperative for a motivated offender and a victim or

target to converge in space and time. The environment influences the offender’s

decision whether to commit a crime or not, their modus operandi, and whether such

crimes are likely to be repeated. Therefore, altering the environment may be used

to alter the decision-making of offenders, victims, or place managers, in order to

prevent crime. These principles have already been applied in the real world, but it

is of great interest to see how they may be extended into cyberspace and for dealing

with cybercrime more effectively. In this section, I will consider the key concepts

of environmental criminology, and how they may be operationalised in the cyber

realm. Later, in Section 6.5, I will focus on the concept of ‘place’ in relation to

cyberspace and propose how it could be adapted for cybercrime mitigation.

6.3.1 Space and Time

The spatial and temporal distributions of crime, which are based on the routine

activities (or “rhythms”) of law-abiding citizens and offenders alike, are the foun-

dation of environmental criminological theory. In this regard, the dimensions of

space and time are critical in understanding why, where, and when crime occurs.

However, some aspects space and time differ significantly between the real world

and the digital world, as do their effects on crime between these environments.
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6.3.1.1 The dimension of space

It is clear that the structure of cyberspace is considerably different to that of the

real world. Whereas real space is continuous, the Internet is highly discretised

with a node-edge topology (e.g., traversing webpages through hyperlinks). Cy-

berspace is also more ephemeral: websites can arise and disappear at rates much

faster than land use in the real world. Yar [219] particularly notes arguments that

cyberspace universally has “zero distance” between its points, hence making it diffi-

cult to meaningfully translate physical concepts, such as proximity and location, to

the analogous problem of crime in cyberspace. Though there is indeed a theoretical

basis for “zero distance” connectivity between computers, in reality, the concepts of

proximity and location are still relevant in cyberspace for a number of reasons. First,

cyberspace has a firm rooting in the physical world. The geographic locations of

Internet service providers (ISPs), routers, and hosted web servers, and their relative

connectivity, affect the structure of the Internet [203]. Political, economic, social,

and cultural factors also affect the distribution of Internet infrastructure and usage.

Numerous examples exist, ranging from the differing amounts of Internet activity

and connectivity across different social demographics and different regions [219], to

the intra- and international politico-economic factors that result in regional-specific

restrictions on the Web (e.g., nationwide censorship of the Internet). Second, as

Yar [219] notes, not all ‘places’ are equidistant when negotiating the Web. The

ability of a user to find an entity on the Web greatly depends on how well other

webpages reference that entity. Therefore, destinations that require many hyperlink

clicks and numerous hops could be considered relatively distant from a given start-

ing point, in comparison to destinations that require fewer hops. In this regard, the

subjectivity of the user experience may be an important factor when considering

distance in the cyber realm.

One can also deduce indicators of space and distance in cyberspace from the

activities and the interactions of Internet users, both offenders and non-offenders

alike (which I do in Section 6.5.1). Though the Internet allows for social networks

to form irrespective of the physical distances between their members, one’s physical
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Figure 6.3: The contraction of distance and time in cyberspace.

proximities and relationships are likely to reflect in their online communications and

activities [209, 210]. For example, one’s email, social network, or phone contacts,

or the peers in their local area network, reflect their real-world relationships – all

of which may be exploited by, for instance, a motivated hacker or a cyberstalker.

As suggested by the geometric theory of crime [41, 37], offenders and victims are

more likely to establish awareness spaces around online services that they frequent

(irrespective of the associated risks) and, thus, are more comfortable in using [139].

For example, users who visit pirate and infringing websites are less likely to install

antivirus software, while, at the same time, being more exposed to malware [198].

When discussing space and cyberspace, another important topic is that of the

jurisdiction differential between states and countries, which is not as clearly appar-

ent in the digital world. That is, the laws and regulations of geographic regions

enable some lines to be drawn on what constitutes acceptable behaviour and what

criminal behaviour in the real world, as well as enabling the necessary agencies

to enforce them. However, with the ephemeral and cross-regional nature of cy-

berspace, drawing and enforcing these legal lines is an ongoing challenge [96, 139].

It is worth noting at this point that little to no academic discourse regarding

the juxtaposition between space and cyberspace (or ‘places’ and ‘cyberplaces’) and

their relevance to cybercrime have ever been preceded by an exact definition of

‘place’ in the first instance. Perhaps, due to us being native to the physical world

and not the digital world, we have taken the understanding of ‘place’ for granted and
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deemed it too incongruent to be used in the cyber context without first addressing the

ontological primitives of this concept, e.g., the three components of physical places:

location, locale, and the sense of place [74]. I elaborate on this in Section 6.5.2.

6.3.1.2 The dimension of time

What may first come to mind is the apparent instantaneity in the cause-and-effect

of one’s actions, such as the sending and receipt of an email message, or the rapid

execution of a complicated task by a computer program. As Llinares and John-

son [139] (among others) note, this can make the subjective experience of time to

appear shorter. However, the temporal dimension is still important in determining

Internet usage, as there is a direct relationship between the real-world activities of

people (especially at a micro level) and their activities on the Internet. For instance,

users are more likely to access websites and download content for leisure and con-

sumption outside of work hours [116]. Websites are more likely to be scheduled

for maintenance late in the evening or during the early hours of the morning with

respect to their local time zones. Major real-world events are quickly followed by

online news and social media chatter.

The time factor is also relevant to the interaction between offenders (or their

actions) and victims. For instance, users can only suffer threatening or abusive

communications once they “come online” on a given service (e.g., social media,

chat messenger, forum), or once they access their emails. Malvertisements and

compromised webpages may remain dormant until a user accesses one of these

pages before suffering a drive-by download attack. Victims of phishing attacks

only become so after opening the malicious emails. Llinares and Johnson [139]

note that, in general, peer-to-peer services can be characterised in one of two ways,

based on the temporal mode of communication between Internet users. The first

type can be characterised as asynchronous (store-and-forward or delayed) services,

such as email programs, mobile SMS, social networking sites and apps that facilitate

direct messaging (Twitter, Facebook, Whatsapp etc), and most static websites. The

second type can be characterised as synchronous (real-time) services, such as VoIP

services (Skype, FaceTime, Google Hangouts, etc) and online multiplayer games
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that facilitate video, voice, and/or text-based chatting. The time between the action

of a offender and the consequent effect on a cybercrime victim ranges from an

instant to several months, or even years.

6.3.2 Offender Behaviours

Following rational choice theory [62] and its emphasis on offenders being rational

decision-makers, there are countless instances of cybercriminals and their malicious

agents making rational selections of when, where, and upon whom they commit

their crimes. Intrusive cybercrimes are an example of the severe (IT-enabled) re-

duction in the costs and efforts associated with “travelling” and selecting suitable

targets. For example, when hackers or their malware agents infiltrate victim systems

or networks, they often scan for vulnerable machines or sift through the contacts of

victim accounts for further targets [114]. This ability results in a multiplying effect

on the potential damage that these crimes may cause. Furthermore, as IT enables

users to easily connect with others on a global scale, cybercriminals may use this to

their advantage in targeting as many victims as possible with the hopes of only suc-

cessfully victimising a few in order to justify the effort. This approach is often the

case with spam email, botnet, and ransomware operations, which enable large-scale

attacks with a few successful ones generating most of the revenue [192].

In the real world, it has been shown that real or perceived anonymity may in-

crease one’s propensity to engage in antisocial behaviour in some circumstances

(the Stanford Prison experiment [223] comes to mind). An interesting notion is the

potential of anonymity in cyberspace to cause a similar increase in cybercriminal

activity, though there is a present need for evidence-based studies to verify this. Cy-

bercriminals have also been shown to be aware of the risks of detection concerning

their operations. For instance, a large proportion of malware is capable of detect-

ing antivirus software and honeypot environments (i.e., dynamic malware analysis

VMs) and, consequently, suspend their activities in order to hinder security analy-

sis [54, 31]. Malware also tends to utilise polymorphism (i.e., the same malware

family appearing in different guises) in order to avoid detection [31]. Some compro-

mised or malicious websites conduct visitor fingerprinting to show specific pages to
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scrapers for search engine optimisation, malicious pages to end-users, and benign

pages to potential security researchers and virtual machines [183]. Cybercriminals

tend to use evasive and anonymising techniques to prevent detection, such as by ap-

plying fast-flux [109] and domain generation algorithms (DGA) [27] techniques as

part of their botnet infrastructures, hosting and conducting illegal business on Tor

onion services, or using anonymous cryptocurrencies to carry out financial trans-

actions (e.g., collecting ransoms from compromised victims [125]), all in order to

make it harder for law enforcement to catch those involved.

It is also interesting to consider how offenders become aware of criminal op-

portunities. As is the case in the real world, offenders are likely to form awareness

spaces on the Web by way of the services that they regularly monitor or use. This

characteristic would allow offenders to become aware of criminal opportunities,

such as bugs in a website or software, or the (vulnerable) demographic of users

for a given service. However, the Internet also affords offenders a higher level of

surveillance to detect victims and criminal opportunity than in the real world, such

as through the ability of a cyberstalker to observe when a user of a social networking

app comes online, or a malware program to detect a working Internet connection on

a victim’s computer. Hutchins et al. [114] describe this more formally as the ‘re-

connaissance’ stage of the cyber kill chain model.

6.3.3 Suitable Targets

Environmental criminologists have assessed the applicability of the VIVA frame-

work (Value, Inertia, Visibility, Access) [68] to understanding how cybercriminals

evaluate the suitability of potential targets [135, 219]. In summary, they find that the

dimensions of ‘value,’ ‘visibility,’ and ‘access’ translate quite seamlessly from their

physical interpretations to their digital ones. For example, focusing on ‘value’, a

cybercriminal may assess the value of a target based on its financial potential, or its

potential to increase the (notorious) reputation of the criminal. Information security

studies reveal a strong rational element in how cybercriminals assess their targets.

Paoli [76] explicitly draws this out in his analysis of timesharing security engineers

in the 1960s and 70s who, like criminologists, conceptualise malicious users as ra-
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tional actors who can assess the value of information. Thomas et al. [201] note that

cybercriminals typically rent out compromised computers at varying prices depend-

ing on their regions, where computers from the West are usually more expensive in

the cybercriminal economy than those from the rest of the world. Concerning the

use of stolen email credentials, Onaolapo et al. [158] found that illicit users may

ascertain the value of email accounts by executing searches using keywords such

as ‘bank’ and ‘money.’ Turning to the other dimensions, the ‘visibility’ of a target

from the perspective of a cybercriminal could translate to a victim’s online pres-

ence, or the presence of well-known vulnerabilities in a service (e.g., a website

bug, or a software CVE3). The ‘accessibility’ of a target may refer to a victim or

system’s attack surface by way of their software configuration (and associated vul-

nerabilities), or whether targeted data is stored within an access-controlled, digital

environment or not. Even the aspect of ‘inertia’ – the difficulty associated with

an offender’s ability to transport a physical good, or to overpower a victim, due

to their mass – is still relevant to cybercrime. Though some have considered it

ill-conditioned for cybercrime because of the apparent “zero-mass” of digital data,

recent discussions [219, 135] have shown that the sizes of target data, and the (in-

hibited) technical specifications of a cybercriminal’s computer, may be forms of

inertia that can influence cybercrimes such as information theft.

6.3.4 Guardianship and Natural Surveillance

Guardianship against crime is another relevant concept to the digital world. Princi-

pally, family members, neighbours, or friends may act as protectors in the physical

world for would-be victims of crimes such as cyber harassment and bullying [36].

However, the concept of guardianship can be extended into cyberspace, both spa-

tially (i.e., guardians can operate over the Web), and in an anthropomorphic sense

(i.e., guardians may be software or ‘bots’ – not human beings alone). For instance,

website owners, forum moderators, language filtering technologies can all act as

guardians: to detect and prevent instances of cyber harassment and abuse. Popu-

lar social media sites such as Facebook, Twitter, and YouTube automatically detect

3
https://cve.mitre.org/
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and remove explicit content. Most Internet forums allow for the use of language

filters to block inappropriate language. Likewise, the concept of natural surveil-

lance [156] is also apparent in the cyber context, which talks of the ability of users

to monitor spaces that they retain a shared interest. Notably, within social network-

ing, blogging, and e-commerce websites, ordinary users can report inappropriate,

rule-infringing, and/or illegal posts and adverts to the moderators of these services.

For more technically advanced crimes, capable guardianship and place man-

agement continue to be important to mitigating cybercrime. Website and software

users are empowered to report bugs for their remediation – bugs which could oth-

erwise be exploited and affect other users. Bug bounty programmes [90] create a

financial incentive for such reports to be sent to the maintainer of the system and so

allow the bug to be corrected. Network administrators, security analysts, and their

myriad of security technologies (firewalls, intrusion detection/prevention systems,

etc) are at the frontline of network-level protection, acting as guardians to users

and devices within these networks. Endpoint- and application-level guardianship is

also present through operating system, antivirus, antimalware, and web application

technologies such as spam filters, unsafe site alerts, and web application firewalls,

all employed for the protection of the end-user. In the mobile technology market,

official app stores (e.g., Apple Appstore, Google Play) are more likely to vet third-

party apps for malware and employ stricter development criteria than their unofficial

counterparts [157]. However, despite the proliferation of digital guardianship, the

task of improving system security has shown itself to be a continuous arms race

between security practitioners and cybercriminals.

How and why some guardians (or “controllers” in general) are effective in de-

terring crime in the real-world, while others are not, is a topic that has only been in-

vestigated in recent years. In particular, one study [174] identified an important and

defining relationship that could help denude this variance: the relationship between

controllers and “super controllers” – those who regulate the incentives of controllers

to prevent crime. No doubt, understanding the essence of this relationship towards

preventing cybercrimes will be a valuable direction for future research.
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6.4 The Cybercrime and Cybersafety Landscape
The field of environmental criminology has been, for the most part, primarily fo-

cused on crimes perpetrated in the physical world. On the other hand, the informa-

tion security community has been studying the different facets of cybercrime and

malicious computer activities for decades. Surprisingly, the parallels between the

mitigations proposed by the information security communities and environmental

criminology research have never been made explicit. The purposes of this sec-

tion are threefold: (i) to give a general overview of the cybercrime and cybersafety

landscape, and the current mitigations used; (ii) to draw parallels between the miti-

gations proposed by the information security community and the theoretical models

of environmental criminology; and, finally, (iii) to present some examples of new,

potential mitigations by applying environmental criminology (Tables 6.3 and 6.4),

which are presented at the end of this section.

6.4.1 Anonymous Marketplaces

With the ongoing rise in malware distribution, widespread data breaches, and the

unethical collection and use of personal data by various corporations and gov-

ernments, there has been widespread attention and development towards privacy-

enhancing technologies and regulations. One such technology that has become

prominent is the Tor anonymous communication network. This encrypted network

is resistant to common Internet tracking methods and enables users (who utilise it

correctly) to effectively remain anonymous from all but the most technically capa-

ble adversaries. There are legitimate purposes for such a technology: users read-

ing about sensitive topics, those with suppressed rights to freedom of expression,

journalism, whistleblowing, or those who object to targeted advertising. Unfortu-

nately, however, this anonymity has also been exploited to hide criminal activities,

such as the trafficking of drugs, child sexual abuse images, violent pornography,

and weapons. Even worse, underground forums and anonymous marketplaces (e.g.,

Silk Road) have arisen, enabling the convenient trade of such illicit products and ser-

vices. Researchers have also observed the rise of ‘crimeware-as-a-service’ (CaaS)

models [183] along with these “underground markets”. These criminal business
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models help to make cybercriminal operations (spam delivery, malware distribu-

tion, drug trafficking, money laundering) much more organised, automated, and ac-

cessible, especially for criminals with limited technical skills [192, 183, 57]. Such

business models have been made possible because cybercriminals can network with

each other on these underground services and exploit various outsourcing opportu-

nities.

Mitigations: The primary methods of intervention towards illegal anonymous mar-

kets are server takedowns and arresting its operators. These approaches were seen

in law enforcement’s takedown of the infamous Silk Road marketplace in 2013,

which, at the time, was nearly a monopoly. However, researchers have found that

many more and diverse anonymous marketplaces have come to prominence since

the takedown of Silk Road, with some (e.g., Silk Road 2.0) arising in less than a

month. There is evidence of adaptation by these new marketplaces and their pa-

trons, such as the increased use of encryption [185] and decentralised escrow ser-

vices [110], and the diversification or specialisation in the types of products and

services offered [80, 185]. These changes mirror the well-known criminological

mechanisms of crime displacement (the net movement of crime elsewhere as a re-

sult of an intervention) and crime adaption (cybercriminals altering their operations

in order to bypass an intervention), which are potential, undesirable side effects of

some interventions.

6.4.2 Cryptocurrencies

Decentralised cryptocurrencies have gained significant traction over the past

decade, with Bitcoin being the first and most widely used cryptocurrency. Bit-

coin offers pseudonymity to its users, where accounts are not necessarily linked to

real-world identities, but transaction details are publicly available in the distributed

ledger. Other cryptocurrencies, such as Zcash, are designed for full anonymity [32].

Such properties are attractive to cybercriminals [43], making cryptocurrencies pop-

ular for illegal activities, like purchasing illicit goods and services [146], and en-

abling ransomware extortion [125], digital theft [173], and cryptocurrency launder-

ing [44]. Kamps and Kleinberg [123] identified that cybercriminals take advantage
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of the unregulated nature of some cryptocurrencies to engage in “pump-and-dump”

schemes. This scheme is a type of fraud that involves three stages: accumulating a

specific cryptocurrency coin, increasing its perceived value through misinformation

(pumping), then selling it off to unsuspecting buyers at a premium price (dumping).

Mitigations: Researchers such as Meiklejohn et al. [146] and Harlev et al. [101]

have devised techniques that can, to some extent, de-anonymise the operators of

Bitcoin transactions. Such techniques are especially useful for crime investigation

and are similar to geographic profiling [82], which involves connecting locations in

a series of crimes by an offender in order to locate their “anchor point” (e.g., their

home). These are also practical implementations of the ‘reducing anonymity’ situa-

tional crime prevention (SCP) technique, which increases the risks for cybercrimi-

nals by exposing their identities. With regards to pump-and-dump schemes, Kamps

and Kleinberg [123] devise an anomaly detection technique in order to identify these

schemes within time-series data of the trading prices and volumes of different cryp-

tocurrencies. However, with an ever-increasing number of cryptocurrencies coming

to the fore, and some that enable greater anonymity, it is clear that new approaches

are needed to detect and discourage these sorts of criminal activities.

6.4.3 Cyberbullying and Online Abuse

With the advent of computer and networked technologies, the rapid adoption of

the Internet has enhanced the abilities of end-users to perform their daily interac-

tions – communicating, purchasing and selling products, exchanging information,

working, and engaging in leisurely activities – without the limiting restrictions of

time and space. Likewise, there has also been an increase in criminal opportunity

through such technologies, thus enabling and (potentially) multiplying crimes that

traditionally relied on physical, human-to-human interaction.

Studies have followed the physical-digital transition of such interpersonal

crimes and antisocial behaviour, like cyberbullying [153, 202], cyberstalking and

cyberharassment [212, 168], online hate speech [142, 107], and online child sexual

exploitation and sexual harassment [102, 29]. These are only a few types of the

crimes that have gained traction from such shifts in technology and society.
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Mitigations: The default mechanisms for dealing with online abuse (in its many

forms) typically involve reporting abusive or offensive content (and their authors)

to the relevant service moderators (or utilising place managers from an SCP per-

spective). In extreme cases, such as the commission of violent threats, online sex-

ual harassment, or child sexual abuse images, one may report such behaviours to

the police. Although such actions can be useful, they are inherently reactive and

often vulnerable to reporter biases (e.g., opinions of inappropriacy, cultural dif-

ferences) or false reporting, and are probably less effective in preventing future

occurrences [142]. Researchers such as Ioannou et al. [117], advocate the need

for a proactive and multidisciplinary approach to dealing with online abuse. Even

automated filters, which ought to blacklist hate speech and offensive language, are

limited, as in they rely on predefined dictionaries of words. Such dictionaries are

also inherently reactive and are inflexible towards misspellings and evolving lan-

guage [178]. Consequently, researchers have developed some proactive techniques

for mitigating these crimes.

Mariconti et al. [142] develop a supervised machine learning approach to au-

tomatically determine whether a YouTube video is likely to be “raided”, i.e., to

receive sudden bursts of hateful comments. Serra et al. [178] propose a text clas-

sification algorithm using class-based prediction errors in order to more effectively

detect evolving and misspelt hate speech. Chatzakou et al. [53] develop a sys-

tem that automatically detects bullying and aggressive behaviour on Twitter, using

text, user, and network-based attributes. Founta et al. [92] present a holistic ap-

proach to automated abuse detection by supplying deep learning architectures with

text and metadata-based inputs. Yiallourou et al. [220] devise a methodological

approach that can be used to support the automated detection of images contain-

ing child-pornographic material. The successes of such surveillance strengthening

techniques, which are indeed subsets of risk-increasing SCP techniques, are likely

to increase the risk of getting caught for offenders and are just some of the mul-

tidisciplinary ways to deal with such problems. Of course, other forms of coun-

termeasures exist. For example, the impersonation of minors by law enforcement
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has been shown to be effective in apprehending offenders, while automated chat-

bots are being developed to profile potential offenders [29]. There is also the arrest

and prosecution of the worst offenders [87]. Educating minors and Internet users to

avoid online abuse victimisation is also an important, long-term initiative [214].

6.4.4 Cyber Fraud

Fiancial crime and fraud have also made a paradigm shift into the cyber world. The

phenomenon of advance-fee fraud, or “419” scams (cybercriminals reaching out to

potential victims with grandiose promises of wealth in exchange for advanced pay-

ments from them) have been well-documented by researchers [103]. Recent works

have found such scams are more of a universal issue than once thought [144], rather

than being one that only involves less economically developed countries. Cyber-

criminals have also been known to target other services for fraudulent activities,

depending on their demographics of interest. For example, “419” scams are likely

to be delivered en masse through spam email communications, where gullible re-

cipients would self-identify themselves by responding to these emails [103]. Ro-

mance scammers are likely to operate on dating websites in order to manipulate

emotionally vulnerable users [84, 112, 45]. Consumer fraudsters are likely to target

large online marketplaces to commit buyer or seller fraud [204]. Various forms of

identity fraud, facilitated through Internet-enabled theft of personally identifiably

information (PII) (e.g., names, addresses, email addresses) or account credentials

for common services (e.g., email, banking, social media) are also problems that

the information security community closely monitor. Researchers have recognised

that phishing emails and malware are common precursors to identity fraud [170],

and they have monitored the illegal activities that subsequently ensue with such

credentials [158].

Mitigations: The effective prosecution of scammers is necessary but often difficult

due to the transnational nature of these operations and the relatively small amounts

of money involved per fraud. Some engineering countermeasures are in use, such

as the use of spam or phishing filters to prevent malicious messages reaching re-

cipients, or blacklists that raise alerts or block known phishing websites. However,
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the maintenance of such measures is a continual arms race, as cybercriminals are

always adapting these spam messages or compromising new websites to avoid these

blockers. It is possible for services to automatically detect scammer profiles, such

as by their reuse of profile descriptions or profile photos [84]. On the other hand,

perpetrators could also adapt to such countermeasures with ease. Arguably, the

most effective countermeasures could be to reduce the profitability, or increase the

required effort, for such crimes. An economic strategy, such as increasing the trans-

action fees or the necessary background checks for money transfer services, could

be a set of mitigations that attack the profitability of such crimes. Awareness cam-

paigns could also help to reduce the opportunity for victimisation, but perhaps more

so if these campaigns are directed towards the most vulnerable, as identified by their

personality types and victimisation statistics [45, 211]. With regards to environmen-

tal criminology, these are recognised as market disrupting and target removing SCP

techniques, which involve reducing the rewards of crime by denying criminals the

ability to steal, sell, or access a target.

6.4.5 Malware and Botnet Operations

One area of focus in the information security community is the study of malicious

software, or malware, which is also the principal focus of this thesis. As I described

in Section 1.1, the issue of malware came into prominence in the 1980s, but in

recent times it has become a massive underground economy. In short, financial mo-

tivations (above others) have become a cornerstone to the design and proliferation

of modern malware. Researchers have identified that modern strains typically carry

a myriad of functions, no doubt for the purposes of monetisation. Malware fami-

lies, such as Zeus [33], for example, can steal banking and financial credentials on

compromised machines, log keystrokes and extract documents, or to encrypt victim

computers to be held for ransom. Even worse, some malware families are designed

to retain prolonged control of compromised devices and assimilate them into larger

networks of infected machines, or botnets. These botnets may be used (or rented

as-a-service) to facilitate distributed denial-of-service (DDoS) attacks against a tar-

get, to send spam emails [192], or to mine cryptocurrencies using the economic and

158



computational resources of the victims and their devices. Indeed, one the key obser-

vations presented in the previous chapter was the fact that malware can very often

engage in completely unpredictable and undocumented behaviours, such as a bank-

ing trojan delivering other malware components and competing brands of banking

malware to victim devices (see Section 5.5.1).

Malware distribution has been refined to infect as many viable victims as pos-

sible. Initially, there was a heavy reliance on human activity and manipulation,

such as the need for victims to open spam email messages [187] or to be social

engineered into activating a malicious file [155]. Nowadays, cybercriminals have

developed distribution mechanisms to completely cut out the need for human in-

teraction, such as delivering malware directly through automated browser-based

attacks (or drive-by download attacks) via compromised websites or malvertise-

ments [222, 152, 182]. To ease the lives of malware operators, the cybercrime

ecosystem proceeded to come up with exploit kits – software packages that deliver

a wide variety of exploits for different computer configurations [98]. This innova-

tion, ultimately, increases the probability of a victim’s system becoming compro-

mised. In a further attempt to streamline malware delivery and lower the entry bar

for cybercriminals, pay-per-install (PPI) schemes have also arisen in the cybercrime

ecosystem [47]. These services are specialised botnets of infected devices that en-

able the distribution and download of new malware onto these already compromised

machines. PPIs are set up and managed by a service provider, whom customers pay

in order to infect machines with their own proprietary malware.

As described in Sections 1.1 and 1.2, the disruption of the malware distri-

bution economy is an ongoing challenge. Cybercriminals increasingly implement

new and numerous techniques in order to prevent their malware and botnets from

being detected and disabled. Researchers have found that malware often obfuscates

their outgoing communications, undergo polymorphism to “change their appear-

ances”, remain “silent” whenever they detect a possible malware analysis environ-

ment, copy themselves to multiple locations on a compromised machine, or dis-

tribute themselves over multiple devices on a network [31]. Botnet operators have
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also been found to employ various tactics to avoid detection and takedown attempts

of their infrastructures, such as implementing fast-flux techniques (the rapid rota-

tion of IP addresses) [109], or domain generation algorithm techniques (the constant

changing of domain names) [27], to hide the locations of their command and control

servers.

Mitigations: The challenges of malware and botnet infrastructures are as complex

as their operations. First, there is the issue of preventing malware infection and

spread. Signature-based antivirus programs have long been the major defence in

detecting and removing malware, along with intrusion detection systems and con-

tent filters. However, they struggle with the extensive manner of forms that mal-

ware now appears (polymorphic, metamorphic, compressed, encrypted, etc). This

is compounded further by the fact that, according to some key findings presented in

Section 5.5.1, most malicious activity is carried out by a tiny proportion of malware

binaries, which means that the vast majority of malware signatures that are derived

for detection may end up yielding little to no impact anyway. Antivirus programs

that use heuristic methods for malware removal are now much more common (i.e.,

detection based on abnormal program behaviours). Notwithstanding, malware re-

moval is still a reactive strategy, so proactive measures have also been developed.

One such is the use of antimalware tools, which attempt to prevent malware attacks

in the first instance through methods such as malware sandboxing, raising browser

alerts on suspicious websites, and preventing the spread of malware if a device is

infected. Another proactive approach is vulnerability assessment and management,

which deals with providing regular system updates in order to remove known vul-

nerabilities. Such updates would reduce the success of drive-by download attacks,

for example, thus minimising one’s attack surface for malicious actors to exploit.

Alternatively, and as identified in Section 4.4.1, benign online services that are be-

ing exploited by malicious actors to deliver malware could help to disrupt its spread

by improving their security hygiene and practices. All these techniques are akin to

target hardening that is applied in SCP and CPTE/UD frameworks, which aim to in-

crease the difficulty of an attacker gaining access to their target. Although malware
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delivery is not completely dependent on human error, this role is still substantial.

Educating users to keep their systems up-to-date and on how to avoid social en-

gineering attacks are some non-technical approaches that are also applied, such as

with Action Fraud and their #UrbanFraudMyths4.

Second, there is the issue of disrupting botnet operations. One important tech-

nique involves the infiltration of botnets by security researchers [33, 22, 55, 48].

Such techniques allow researchers to collect intelligence on cybercriminal opera-

tions, and identify weak points in their communication protocols for disruption, or

locating their C&C servers for ISP takedowns. They may also be used to identify

the owners of these botnets, such that law enforcement may arrest and prosecute

them. However, with the estimates of Kaspersky Lab [2] indicating there could be

hundreds of thousands of botnets in the wild, it is difficult to see the scalability of

these techniques. More generally, as noted in Section 2.6, the success of takedown

operations is mixed and highly dependent on the targeted botnet and other contex-

tual factors. Alternatively, service providers may provide some mitigations. For

example, email programs and social networking sites usually employ spam filters,

which may consequently deter spam operations. However, these filters are often

signature-based, so minor adjustments in the spam messages may cause them to

go undetected. ISPs may use DNS sink-holing techniques and blacklists to prevent

their customers from accessing sites known to be malicious. However, such tech-

niques also come under the “arms race” issue of keeping up with the cybercriminals

who constantly seek to evade detection of their infrastructures. Other economic

measures are possible, such as pressuring ISP services to dissociate from “bullet-

proof ISPs”, which resist law enforcement and typically harbour these criminal ac-

tivities, or pressuring financial institutions to dissociate from rogue banks, which

liaise with cybercriminals, in order to effectively shut down their operations. En-

vironmental criminology recognises these as market disrupting techniques (SCP),

which aim to reduce the economic benefits of such operations until they are no

longer viable.

4https://twitter.com/hashtag/urbanfraudmyths
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Using the SCP framework, I provide a proof-of-concept matrix of potential

countermeasures for disrupting malware operations in Table 6.4.

6.4.6 A Synergistic Approach
Though there are already clear parallels between the theoretical models of environ-

mental criminology and the mitigative techniques proposed by information security,

security researchers are yet to fully explore the structured analytical and actionable

processes that environmental criminology has to offer. Firstly, past and current mit-

igations devised by security researchers only seem to represent or consider a subset

of all the techniques that could be utilised, while simultaneously lacking a system-

atic approach to establish such techniques. Secondly, little attention seems to be

directed towards the consideration, monitoring, and evaluation of the actual effects

of interventions by security researchers, both with regards to the victims/targets and

the malicious actors, and how they respond to these interventions. Ultimately, with-

out considering the fulness of the crime prevention process, mitigations are more

likely to fail (to different degrees) in controlling crime in both the short- and long-

term, as cybercriminals may quickly identify alternative targets, crime types, or

modus operandi.
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6.5 Adapting the Concept of Place for Cyberspace
It is apparent that the environmental aspects and criminological principles that exist

with physical crime can, to a large extent, be extended and applied to cybercrime.

However, there is still the need for a clear conceptualisation of ‘place’ with respect

to the digital space and cybercrime, since the concept of place is key to environ-

mental criminology. In this section, I deduce what ‘place’ means in the context

of cybercrime by examining various types of cybercrimes, and also by considering

‘place’ in the real world. I use the classifications of cyber-enabled crimes and cyber-

dependent crimes to assess the concept of ‘place’ within each class of cybercrime,

as defined by criminologists [145, 135].

6.5.1 Analysing Cyber-Enabled and Cyber-Dependent Crime

Contexts

Cyber-enabled crimes [145] are crimes that occur in the real world but can be en-

hanced, expanded, and optimised by Internet technologies. That is, the Internet

makes it is easier and cheaper for cybercriminals to find victims, to operate interna-

tionally, and to avoid getting caught. Some cyber-enabled crimes include identity

theft, consumer fraud, various forms of cyber harassment and threatening commu-

nications, and the trafficking of illegal products or services through the Internet.

Cyber-dependent crimes [145], on the other hand, refer to crimes that are only pos-

sible as a result of computer and networked technologies, such as hacking, mal-

ware infection, or botnet operations. Though these crimes will still have real-world

consequences (e.g., identity theft, financial fraud), they can only occur through

computers. Just as physical crimes occur in particular places, one can review a

wide variety of cybercrimes and identify their associated ‘cyberplaces,’ especially

focusing on the crime event and the context in which it is commissioned.

6.5.1.1 Cyber-enabled crimes

Researchers have found that interpersonal crimes (cyber harassment, cyberbullying,

cyberstalking, online sexual exploitation, etc) primarily occur on online services

ranging from email, mobile phone, and instant messengers [212, 202] to blog sites,
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social networking sites, forums, and chat rooms [168], to online games [102] and

various VoIP technologies (i.e., real-time video chat) [29]. Financially-motivated

cybercrimes have been found to occur also on these same online services, though

the purposes and modus operandi of these crimes differ to interpersonal crimes.

Whereas interpersonal crimes primarily involve the use of these services to emo-

tionally traumatise and instil fear in victims, financial crimes, such as identity theft

or consumer fraud, primarily involve the use of these services to induce potential

victims for information and financial theft. For example, phishing scams [140] and

advance-fee “419” scams [144, 103] typically occur on email services and web fo-

rums. Other scams that are unique to a type of online service, such as romance

scams [84, 211] or buyer or seller fraud [204], almost always begin with the cyber-

criminal contacting the victim through these services (match.com, eBay, etc) and

luring them into offline communications (email, telephone, or in-person), before

defrauding their victims or committing other crimes. Profile name re-users, or “im-

personators” – people who take advantage of reputable profile names because of

their large followings – operate on social networking sites in order to engage their

newly acquired followers in illegal activity (spam, illegal sales) [141].

Further still, crimes that involve the trafficking of illegal products and/or ser-

vices (drugs, weapons, child sexual abuse images, malware, stolen credentials and

credit cards, etc) also occur on online services, including through anonymised

networks such as Tor, and using pseudonymous cryptocurrencies such as Bit-

coin [52, 57] for conducting transactions. These services allow perpetrators to take

advantage of the transnational nature of the Internet to upscale their distribution

networks, their consumer markets, and, ultimately, their financial profits. Here, it is

clear that the concept of ‘place’ is inherent: people know the sites to visit and the

applications to use in order to carry out their online activities, whether legal or not.

6.5.1.2 Cyber-dependent crimes

The nature of cyber-dependent (or “high-tech”) crimes differ to that of interpersonal

crimes. Primarily, cyber-dependent crimes exist only due to the presence of com-

puters and the Internet, whereas interpersonal crimes (harassment, consumer fraud,
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etc) already exist in the real world, but are only amplified through such technolo-

gies. More precisely, the primary target of high-tech crimes (hacking, malware,

denial-of-service attacks, etc) are the computers and digital resources themselves,

before the physical users who own or use them. Because of this, such crimes can, at

times, bypass the need for human activity in order to occur. For example, security

researchers have identified buffer overflow attacks (which occur on victim comput-

ers) as a common attack vector used by malware, such as the Blaster and Code-Red

worm families [30, 147], completely bypassing the need for social engineering.

Network protocol flaws have been exploited in order to establish malicious network

connections, break into systems, and automatically spread malware throughout a

victim’s local network [126, 148].

Nonetheless, the “human element” is still exploited whenever possible. A sig-

nificant proportion of malware is delivered to victim computers through social en-

gineering, such as in the download of malicious email attachments. For example,

the Bagle.AH and Netsky.C worms propagate themselves as email attachments to

addresses that they find on infected computers, while also spreading through file-

sharing peer-to-peer networks and local network drives [35]. Victims are also di-

rected to malicious websites, via email, social media [141], or through malvertise-

ments [182], where they consequently face bombardment by silent drive-by down-

load attacks. Such attacks often result in the forced download of malware onto

the victims’ computers [152, 183]. The websites themselves that utilise vulnera-

ble software are also targeted, such as through SQL injection and XSS attacks. In

particular, websites that use content management systems, such as Wordpress, are

more likely to be targeted and compromised than others due to their higher market

share [206, 205]. Mobile users are not exempt from such devious strategies. For in-

stance, security researchers have found that the Mabir worm spreads through blue-

tooth and MMS, prompting nearby potential victims to accept its installation [35],

while the Geinimi trojan app is installed through third-party app stores, which con-

sequently opens back doors on these devices and exfiltrates information [56].
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There is also a relationship between the virtual places and geographic locations

where cybercriminals tend to carry out their nefarious activities. For instance, the

assimilation of compromised machines into botnets is common after malware ex-

ploitation. The prices of these ‘bots’ (hence their values) vary in underground mar-

kets based on the countries where they are located [201]. The command and control

servers that are used to monitor and operate these botnets are typically hosted by

“bulletproof” ISPs, which are based in countries resistant to law enforcement pres-

sure and take-down attempts [183]. Similarly, malware that spreads through a host

tends to look for peers that share some proximity to the victim, e.g., via email

address books, shared computer networks, or social media connections. More gen-

erally, every computer and network resource is tied to physical infrastructure (e.g.,

computer memory, physical devices) that is located in the real-world, each present-

ing unique opportunities for crime.

In the context of these crimes, ‘place’ is more broad in scope, from websites

and webpages to online services and web applications, to computer devices and their

software, peripherals, and networks. These examples exhibit a marked difference in

how ‘place’ is perceived between cyber-enabled and cyber-dependent crimes, where

the former gravitate around online services and web applications (human-to-human

activity), while the latter permeates every area of computing.

6.5.2 A Framework for Defining Cyberplace

The compatibility of environmental criminology with the practicalities of cy-

berspace merit, I believe, a new, complementary research direction towards miti-

gating cybercrime. Moving forward, the key to this new research direction is the

development of a consistent definition of ‘place’ in cyberspace, or, simply, cyber-

place. I have shown that the concept of place in cyberspace is strongly apparent on

both the user- and device-levels: Internet users know the websites to visit and the

applications to utilise for their work, leisure, or consumptive activities. Cybercrim-

inals know the services to use to find and exploit their victims, to target assets, or to

engage and trade with other cybercriminals. Routing devices know how and where

to transmit information, through various network protocols (e.g., TCP/IP) in order
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to reach any part of the world. Devices within a computer network are communica-

ble by their own internal IP and MAC addresses. Even internally, every computer

application, library, instruction, and chunk of data is addressed in memory and can,

thus, be pinpointed to a physical device in the real world.

I have also shown that the way that each cyberplace is considered can be con-

textual, depending on the perspective of the actors who interact with them. For

example, a web domain hosting a chatroom may constitute a single cyberplace for

its users or a crawler bot, but in a networked sense (e.g., a router or a DNS re-

solver), it could represent different cyberplaces if it undergoes changes in its public

IP address. Characterising these different cyberplaces would help the adaptation

of crime prevention frameworks towards analysing and mitigating cybercrime more

effectively.

Revisiting the real-world. Though I have spent considerable effort in identifying

different cyberplaces through the contexts of cyber-enabled and cyber-dependent

crimes, it is also worthwhile revisiting the primitive concept of ‘place’ from the real-

world perspective. ‘Place’ has long been used and commonly understood within

society for millenia, but it is only in the last few decades that geographers have

conceptualised it as a particular location that has acquired a set of meanings and

attachments [74]. It is recognised that place can be conceptualised in terms of the

social interactions that they tie together, in that people go to places to engage in

activities and that they interact with places themselves [143, 74]. However, more

concretely, ‘place’ can be considered as a meaningful site that combines three fun-

damental components: location, locale, and a sense of place [74]. Location refers to

the “where” or the absolute position of a place (e.g., the geographical coordinates of

a university library). Locale refers to its material and tangible setting – the way that

a place looks and what is contained therein (e.g., the university library on a busy

street in central London, surrounded by buildings, having a gate and a courtyard,

and long corridors and thousands of books within it). Finally, the sense of place

refers to the abstract feelings and emotions associated with that place, which may

be derived individually or by shared experiences (e.g., it is a place for study, there
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Figure 6.4: The analogous concepts of ‘cyberplace’ and ‘place.’

is a presumed abundance of written materials, and there are personal experiences

and history associated with the library). With these three elements, people (uncon-

sciously) identify and differentiate places in the physical world. In a similar way,

I propose that cyberplaces may be conceptualised as a combination of three funda-

mental components: location, state, and function (Figure 6.4), which I describe as

follows:

6.5.2.1 The Locational Component

This component is analogous to location with respect to physical places [74], which

refers to the precise point or GPS location of a physical place. Thus, particularly

in relation to how information flows within and between computers, the locational

component of the cyberplace concept encapsulates information pertaining to the

specific locations of cyberplaces in terms of digital address spaces. These ad-

dress spaces encompass entire networks and computer hosts (e.g., IP and MAC

addresses), peripheral devices, disk sectors, and even the memory cells within a

computer. Therefore, just as computers and networks can inherently resolve the

URL of a page on a website to a specific IP address and file directory, or resolve

a function call in a software program to a specific address within a computer’s ad-

dress space, locational information enables us to specify the precise location of each

cyberplace in cyberspace. In the same way, a change in “location” (address) will

constitute a change in the overall cyberplace, which may be perceptible, such as

would be in the case of a server changing its IP address, where the relevant DNS

servers (the perceiving actors) would update their address mapping (A) records for

170



this domain and new IP. However, such changes may not be perceptible to actors

who just access a server through its URL.

The locational component also explicitly links each cyberplace to a real-world

location and device. For example, every website has an IP address, which can be

traced to a physical server. Every instance of a file or an application can be traced

to one or more memory locations within a computer system or peripheral device.

Thus, this component provides useful information for the stage of implementing

real-world interventions, such as pinpointing the real-world locations of cybercrim-

inals and their servers for arrest and takedown. Of course, it is worth noting that

the issue of criminals masquerading (or spoofing) their device locations is an oper-

ational issue, based on Internet design, and not a conceptual one. As I have previ-

ously discussed, ‘location’ can be an important factor from the criminal prospective

(e.g., cybercriminals seeking targets from a certain country) and it is recognised by

both human and machine actors (computers, malware, bots).

6.5.2.2 The Statal Component

The second component of the cyberplace concept is the statal component, which

encapsulates information relating to the state of a cyberplace and its tangible as-

pects at a specific point in time. This is analogous to the locale aspect of physical

places [74], which refers to the way a place looks, its tangible aspects, and the sur-

rounding environment. The tangible aspects of a cyberplace can be wide-ranging,

and both internal and external to its environment. The internal state of a cyberplace

(and how it is perceived from within) could be attributable to, for example, the

content and hyperlinks on a webpage, or the webpage or software source code and

the external resources that it utilises, or the files within a directory, or the overall

design and appearance of the cyberplace. On the other hand, the extenal state of

a cyberplace (and its visibility) could be assessed by, for example, the distribution

of hyperlinks from external sites leading to a particular webpage (which affects the

perceived distance from these sites to this cyberplace), or the popularity and gen-

erated traffic of a webpage (which may be captured with Alexa5 or search engine

5
https://www.alexa.com/siteinfo
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rankings), or, in the case of a computer system, an application, or a process, whether

a virtualised environment or the presence of antivirus, firewalls, or intrusion detec-

tion systems can be detected (e.g., a malware deciding whether to operate or hide

its functionality).

The statal component is important because human and machine actors alike

have some ability to assess the immediate context of a cyberplace (e.g., a webpage,

a web application, or a desktop), and, thus, are influenced by those contextual fac-

tors in their decision-making. For instance, on a social media site, the appearance

of some evocative content (e.g., a controversial image or post) may elicit abusive

behaviours from some users, which would not have occurred otherwise. In fact,

whenever there is a change on a website (e.g., a new blog post or comment), this

site also changes state, and, thus, the potential activity that will occur thereafter.

Such a change may, for example, affect the site’s visibility on the Web (e.g., search

engine ranking), raise its profile (e.g., Alexa ranking), or cause it to become a crime

hotspot (e.g., a target for raiding). Likewise, the introduction of user input fields on

a webpage (logins, search bars, contact forms – possible site vulnerabilities) may

be followed by SQL injection and XSS attacks, before which such attacks would

not have been possible. More generally, each time any online entity is updated,

this entity changes state. Thus, if one version of this entity has a vulnerability that

is targeted by cybercriminals, whereas an updated version does not, these two ver-

sions would represent separate cyberplaces from the perspective of the malicious

actors. Therefore, users of unpatched versions of website and desktop software, for

example, would be interacting with cyberplaces with elevated risks of victimisation

(e.g., software exploitation, drive-by download). This component is relevant to both

cyber-enabled and cyber-dependent crimes, as the states of websites and software

are easily perceptible by both humans and machine actors, and could, therefore,

influence their actions.

6.5.2.3 The Functional Component

The third component of this cyberplace concept is the functional component, which

encapsulates the intuitive function or purpose behind a cyberplace, to wit, why an
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actor (human or machine) interacts with it. This is the cyberspace equivalent of the

sense of place aspect of physical places [74], which refers to the feelings and emo-

tions that are evoked when one considers a physical place (e.g., a restaurant) as well

as one’s mental expectations concerning such a place (e.g., the presence of tables,

chairs, food and drink, and operating hours mainly within the afternoon or evening).

As such, this is the most abstract component of cyberplace. However, it is also a

vital one in that it provides the purposes to how and why actors interact (or expect to

interact) with cyberplaces. For instance, the main reason for accessing news web-

sites is to acquire local news information. News sites would probably be expected

to categorise each news items with some (hyperlinked) headline, perhaps with some

images or short synopses, and with some sort of order according to recency and/or

significance (e.g., recent and important news at the top of the page, older and less

important news at the bottom or archived). Generally, however, one would not ex-

pect to use a news website to purchase groceries, to buy a new laptop, or to access

a remote server – one would expect to visit an e-commerce site for the former sce-

narios, or to use a remote-desktop application for the latter. In fact, it is probably

for this reason that the Web is characterised using physical metaphors (sites, fo-

rums, chatrooms, email, desktops, etc) with which we are familiar in the real world.

Furthermore, machine actors also share an innate understanding of cyberplaces in

accordance to their creators. For instance, crawlers may be programmed to collect

news items on a website with an inherent expectation of how those items are likely

to be organised (e.g., the HTML tags to look for within the source code). Likewise,

there are established protocols that enable computer systems to communicate with

each other, depending on the services and ports involved (e.g., HTTP/S and ports

80/443 for web content, S/FTP and ports 22/21 for file transfers).

In regards to cybercrime (and more generally, the way that the Internet is used),

the functional component of cyberplaces is important in that it is likely the defining

factor as to how and why human and machine actors interact with cyberplaces, as

well as to where, when, and by whom they are used. For example, as I discussed

earlier, there is a general expectation that sites hosting illegal or explicit content

173



(streaming, pirate, or pornographic sites) are more likely to host malware than oth-

ers. Yet, despite these risks, users are still drawn to these websites. Thus, the

functional aspect of such cyberplaces could be what makes them desirable vectors

for malware distribution.

6.5.3 Quantising Cyberplaces and Potential Applications

In a broad sense, I have defined the concept of cyberplace as a combination of three

fundamental components. Of course, I can (and wish to) examine this concept in

further discourse: the internal relationships between these components; its relation-

ships with the real-world and cyberspace concepts of space, time, place, people,

and machine actors; how it maps to various computer system and telecommunica-

tion models; etc. However, I will leave those discussions for future works and, for

now, focus on how this concept may be applied in practice.

6.5.3.1 Cyberplace classification

The three components of this cyberplace concept can be used to encapsulate all the

information that is required to identify, describe, and differentiate cyberplaces on

the Internet. Any cyberplace can be described in terms of its function (e.g., server,

computer, website, web application, process, file, and each with their own types),

its location (e.g., IP address, MAC address, file directory, memory address), and

its state, which pertains to all tangible information relating to it at that point in

time (e.g., webpage or software source code, types of content, included libraries,

software versions, active processes, open ports). How one describes a cyberplace

and to what level of detail would depend on the level of abstraction that is relevant

to them and the underlying schema that they are applying. For example, focusing

on the case of web content (accompanied by an understanding of Web structure),

one could use functional information to coarsely categorise individual websites as

cyberplaces, then to categorise individual webpages as smaller cyberplaces, then

to categorise the individual features on these pages (search bar, blog entries, video

player, etc) as even smaller ones, and so on and so forth. This would, in turn,

warrant the inclusion of finer-grain locational information (e.g., from a domain and
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IP address, to the subdirectory of a webpage, to a line in the source code) and statal

information (e.g., from overall site attributes, such as the number of incoming or

outgoing hyperlinks, or the server software version, to properties of individual pages

or blocks of content, such as the number and content of images or HTML child

elements, or the version of Javascript used). Clearly, there are an infinite number of

ways in which this process may be implemented. Though such a classification could

begin with manual efforts, a useful research direction may be to investigate the use

of modern analytical techniques, such as through data science and machine learning,

to heuristically extract the most efficient descriptors for cyberplace classification at

each level of abstraction.

6.5.3.2 Cyberplace risk modelling

The next step in cybercrime analysis involves classifying cyberplaces into various

types of cybercrime hotspots (see Section 6.2.2.7) by applying the principles of

crime pattern theory [37]. For example, one could label e-commerce and CMS-

enabled sites, and computers using the most popular operating systems, as poten-

tial crime generators (i.e., they generate criminal opportunity due to the presence

of many potential targets). On the other hand, sites that serve illegal content (pi-

rate and streaming sites, underground marketplaces) could be labelled as potential

crime attractors (i.e., they generate criminal opportunity as they are well-known

for harbouring illegal activity). Finally, some social media sites and apps, and sites

with poor cyber hygiene in general could be labelled as potential crime enablers

(i.e., they generate criminal opportunity through lack of supervision or manage-

ment). Either by empirical analysis, by generating probabilistic models, or by some

other method, labelling cyberplaces as cybercrime hotspots could further guide their

classification by cyber risk. Such classifications could express the likelihood of

cybercriminal activity occurring at these cyberplaces, and, therefore, the risk of

victimisation for their end-users and managers. One could even go further to de-

rive expected user activities and potential cybercriminal modus operandi by way

of analysing how users interact with these cyberplaces (e.g., UX analysis of web-

sites and applications, control flow analysis of programs, vulnerability assessments,
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penetration testing). Thus, these behavioural paths could be used as bases for es-

tablishing crime scripts for these cyberplaces (i.e., sequences of events, decisions,

and actions that cybercriminals may follow preceding and following a crime event).

Given that cyberspace is inherently data-rich and discretised, it is possible that these

analytical models may be more suitable for this environment than the contiguous,

real world.

6.5.3.3 Cybercrime mitigation

Finally, these insights may be used for various mitigative strategies:

Educating victims. Awareness campaigns could be raised concerning the types of

sites, services, and applications that pose the greatest risk of harm towards users or

particular demographics, with the potential for new software to provide warnings

before entering or using a high-risk site or application. In the same vein, providers

of these cyberplaces (e.g., website owners, app developers) could be informed of

their likely cyber risk level, and how they could minimise these risks.

Altering cyberplace characteristics. Another class of mitigations involves alter-

ing these cyberplaces to reduce criminal opportunity. In line with various situational

crime prevention approaches, this could range from hardening these cyberplaces

against vulnerability exploitation and improving security hygiene, to altering UX

features and control flows of websites and applications in order to minimise malev-

olent or criminal opportunity (e.g., disabling or correcting vulnerable components

that are likely to be exploited, requiring authentication in order to access a website).

Applying tools and mitigation efforts more efficiently. As research on repeat vic-

timisation suggests, the Pareto principle applies in that a majority of crimes only

involves a minority of offenders and victims. This suggests that the greatest reduc-

tions in cybercrime will arise by focusing cybersecurity tools and mitigative efforts

towards educating and protecting the most exploited victims and targets, making the

most crime-facilitating cyberplaces safer, and deterring, detecting, and apprehend-

ing the most prolific cybercriminals. Cyberplace classification techniques enable

such efforts by identifying the cybercrime hotspots on the Internet, the cybercrimi-

nals who operate in or target them, and the users who are victimised there.
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6.6 Conclusion
In this study, I conducted a review of cybercrime research from the perspectives

of information security and environmental criminology. I presented an overview

of how these two fields understand and (could) deal with cybercrime, identifying

connections between their apparently disparate approaches. Upon review of a wide

array of literature and cybercrime contexts, I provide motivating evidence as to why

a new, complimentary research approach should be pursued involving these two

fields. I initiate this process in earnest, first, by showing how frameworks from en-

vironmental criminology could be used to devise new cybercrime countermeasures

– particularly for disrupting malware delivery and botnet operations; second, by

proposing a conceptualisation of the immediate environmental contexts (or cyber-

places) where cybercrimes occur; and third, by providing some motivating exam-

ples of how the concept of cyberplaces, together with environmental criminology,

could be used to better analyse and mitigate cybercrime. I hope that this work will

encourage the wider research community to build upon this concept of cyberplace

and its implementation in the transfer of crime prevention theories and frameworks

between environmental criminology and information security. Above all, I hope that

such collaborations will yield new and better approaches to cybercrime prevention.
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Chapter 7

Conclusion

This thesis presented three major contributions towards measuring and disrupting

malware delivery networks. In this concluding chapter, I summarise and reflect

on these contributions to security research and practice, discussing the adopted re-

search methodology and the relevance of the findings. I end this chapter with some

concluding remarks, giving my own, personal take on the future of cybersecurity. I

outline specific recommendations for future work in Chapter 8.

7.1 Research Scope and Contribution
This thesis comprises two main themes regarding malware delivery: measurement

and disruption. In line with this, and as outlined in Section 1.3, the purpose of this

research was summarised under two main objectives. In this section, I detail how

these objectives were fulfilled, as well as the key findings and contributions that

followed.

Measuring Malware Delivery Networks
The first objective of this research was to measure malicious file delivery networks

on the Web. More specifically, the following research questions were posed in a

series of measurement studies:

What does the malicious file delivery ecosystem look like? In Chapter 4, it was

observed that the malicious file delivery ecosystem could be partitioned into two

distinct ecosystems: the first was a massive, PUP-dominated ecosystem consist-

ing of an interconnected network of sites, server infrastructure, and unwanted files



(the Giant Component or GC, which was later termed the PUP Ecosystem). This

ecosystem was responsible for over 80% of suspicious downloads on the Web and

was temporally stable for at least a year. These findings led me to further investigate

its structural backbone. The second ecosystem was a sparse one, comprising many,

independent delivery networks, the majority of which were used to deliver malware

(the Non-Giant Component or NGC, which was later termed the Malware Ecosys-

tem). Despite the clear separation of these two ecosystems, it was not uncommon to

find both types of unwanted software in either ecosystem, especially through mixed

delivery infrastructures as exhibited in the Opencandy and Dyre case studies that I

presented. These findings are particularly relevant to the security literature as they

bring other relevant malware and PUP research into context. For instance, some

researchers [127] had previously found malware and PUPs to be mostly disjoint

problems, while others [131] found an overlap of 36.7% of droppers downloaded

both malware and PUPs. These findings reported by other researchers sound con-

tradictory at first, but my research shows how both are mutually inclusive. Going

further, I quantified the relative proportions of PUP-to-malware in the wild, finding

that PUP downloads dominate that of malware by a ratio of 17:2. To the best of

my knowledge, I was the first to do so. Clearly, PUP is a more significant problem

than first thought. This is particularly relevant given the surge of research inter-

est in PUPs and their delivery networks in the last few years, which I discussed in

Section 2.1.2.

Are there differences between the network infrastructures used to download

PUP and malware? This question was addressed in Chapter 4 by comparing the

network structures and delivery tactics employed in the PUP Ecosystem and the

Malware Ecosystem. In general, it was found that the PUP Ecosystem exhibited a

significantly higher use of domains with multiple IP addresses to deliver its files,

which indicates the use of CDNs and (potentially) Fast Flux Service Networks.

This points to PUP being delivered more commonly through well-known CDNs and

online services that have servers in multiple regions (Google, MediaFire, Softonic).

On the other hand, the Malware Ecosystem was found to deliver fewer types of files
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(SHA-2s) per domain, indicating that these sites were not likely CDNs. More likely,

these were malicious sites controlled by the cybercriminal operators, or benign sites

that were compromised and being used to deliver malware. As I noted in the study,

there are a number of possible explanations as to why there are structural differences

between the two ecosystems. However, I could not confirm the specific causes for

these phenomena without collecting additional data (e.g., DNS records, WHOIS

records, site rankings). This is a suggested follow-up for further investigation.

How do malicious file delivery infrastructures evolve over time? In Chapter 4,

I identified cyclic download patterns occurring each week, where infrastructures

delivered more suspicious software during the weekdays than the weekends. I pos-

tulated that Routine Activity Theory [68] from environmental criminology could ex-

plain this observation, i.e., more infections occur when more users are online. Sim-

ilar patterns had been observed by other researchers in other facets of botnet activity,

such as when bots were most active, or when spam emails were sent [70, 186, 188].

Looking at the lifespans of delivery infrastructures, most were found to be short-

lived, with only a minority of infrastructures being stable for a year. I posited that

disrupting the most stable infrastructures (domains, IPs, files) would yield the most

impact, as opposed to focusing on the ephemeral ones. These insights are par-

ticularly useful to stakeholders (researchers, analysts, engineers) who monitor or

respond to malware-related activities on the Web.

How do malicious operations respond to botnet takedowns? In Chapter 5, I

addressed this question by studying three malware operations that faced takedown

attempts by law enforcement and security companies, and observing their post-

takedown behaviours. Many interesting behaviours and activities (some of which

were previously undocumented) were observed and noted in Table 5.2, while the

key takeaways from these findings were discussed in Section 5.5.1. In summary,

none of the malware operations studied were completely disabled after their respec-

tive takedown attempts, and each operation exhibited different responses thereafter

in the short- and long-term. For instance, two operations exhibited immediate drops

in activity after the takedowns, while one operation increased its activity during a
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takedown attempt. At the same time, there were commonalities between the op-

erations in the technologies they employed: the common use of distributed deliv-

ery servers, polymorphism, and takedown resilience technologies. There was also

evidence of spatial displacement by some operators, where malicious operations

moved from one set of infrastructures to another after the respective takedown at-

tempts. There were also observations of significant changes in modus operandi by

the botnet operators, such as when Upatre shifted to a DGA-based server architec-

ture several months after its respective takedown attempt. I later categorised some

of these behaviours as predictable (using environmental criminology theory) or un-

predictable. My argument was that “predictable” behaviours could be pre-empted

and factored into future takedown strategies, whereas “unpredictable” ones required

further research to be better understood. These lessons give the security commu-

nity deeper insight into how malware operators recover from takedown attempts,

enabling more effective takedown strategies to be devised by law enforcement, se-

curity companies, and researchers in the future. It is worth noting that this research

question is not particularly new: as I discussed in Section 2.6, other researchers

have posed similar questions concerning other malware operations. However, one

novel way this question was posed in this work was through the use of new analyti-

cal methods and datasets, which exposed malware behaviours that had never before

been documented in security literature or industry reports.

Disrupting Malware Delivery Networks

The second objective of my research was to identify better approaches to disrupting

malware delivery networks. This was accomplished in two stages: first, by devis-

ing techniques to identify critical nodes in malicious delivery infrastructures that

could serve as effective intervention points, and, second, by surveying the wider

cybercrime literature to identify new methods of generating and evaluating counter-

measures against malware delivery operations.

Identifying effective intervention points. I developed several methods for iden-

tifying critical nodes in malware delivery networks. In Chapter 4, I identified the

core structural nodes (domains, IPs, files) of the PUP Ecosystem using a graph per-
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colation technique. It was found that over two-thirds of these core servers were

located in the US, indicating that ISP takedowns may be most effective in this re-

gion. Another technique was adopted to identify the most stable infrastructures in

the malicious file delivery ecosystem. Using this technique, it was found that 26%

of network infrastructures and 10% of file infrastructures were stable for a year. On

the other hand, most infrastructures were found to be short-lived, with only 75% of

network infrastructures being active for over 6 weeks. I argued that disrupting the

most stable infrastructures would yield the most impact, as opposed to focusing on

the ephemeral ones. Furthermore, in Chapter 5, using another technique to track

entire malware delivery operations, I observed power-law dynamics in malware ac-

tivity. Specifically, a minority of malware binaries were responsible for a majority

of malicious downloads. Clearly, detecting these “super binaries” should be a prior-

ity for the security community. The most obvious beneficiaries of these methods are

law enforcement, security researchers, and analysts who may use these techniques

to track delivery operations and identify intervention points within them for take-

down initiatives. Furthermore, documentation and source code for these analytical

methods have been made publicly available1.

Surveying cybercrime literature for new mitigation strategies. The key idea be-

hind this survey was to go beyond the standard domain boundaries of cybersecurity

research to consider how other fields could contribute to it. I focused on the po-

tential contributions of environmental criminology, which the security community

has only begun to consider in the last few years [191]. I also considered mitigations

for other cybercrimes that intersect with the malware value chain (e.g., Dark mar-

ket solicitation, cryptocurrency crimes, cyber fraud). There were several outputs of

this survey. First, explicit parallels were drawn between information security and

environmental criminology research, as well as areas that did not map as well. I

achieved this by (i) providing an overview of environmental criminology research,

and how some of its theories and practices have already been encapsulated in cy-

bercrime research to date; (ii) exploring key, real-world concepts of environmental

1
https://github.com/ColinIfe/mdn
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criminology, and how they reflect in cybercrime and cyberspace; and (iii) presenting

a survey of cybercrime research from computer scientists, again drawing parallels

between the mitigations used and environmental criminology paradigms. Second,

I demonstrated how environmental criminology frameworks and paradigms could

be used to generate new cybercrime countermeasures. In particular, I discussed the

use of action research models to monitor and manage the effects of a given cyber-

crime mitigation over time. I also proposed potential mitigations to a number of

cybercrimes, the chief of which was a matrix of potential countermeasures to dis-

rupt botnet and malware delivery operations (Table 6.4). Third, while reviewing the

concept of place – a core concept to environmental criminology and studying crime

in the real world – I proposed a new concept of cyberplace that could facilitate the

use of environmental criminology models for crimes in cyberspace. To the best of

my knowledge, these contributions to security literature are the first of their kind.

The knowledge generated from these studies benefit both the academic and

non-academic communities, contributing to the body of knowledge for teaching and

further research, as well as providing a synthesised knowledge base for stakeholders

with an interest in cybercrime analysis and prevention. Such stakeholders include

security specialists, sociotechnical system designers, and public policy practition-

ers. With regards to the novel concepts and proof-of-concept countermeasures that

were proposed in this work, only time will tell of their utility in future academic

research and security practice. Nonetheless, I believe that the security community

and practitioners may apply these ideas, evaluate them, and build upon them.

7.2 Reflection
In this section, I reflect on my overall approach to conducting this research, the

validity of the findings, and the limitations of this research.

Measurement methodology. In the measurement studies conducted, I used data

that was sampled daily for a month, and one day a week for the remaining 11

months. This data was then represented using a graph abstraction, identifying IPs,

FQDNs, URLs, and file SHA-2s involved in each download event. To enrich this
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data, I used VirusTotal, AVClass, and National Software Reference Library ground

truth data to establish which files were malware, PUP, benign, or unknown. I also

used Autonomous System and IP geolocation data to identify the locations of the

servers during the observation period. I then devised a number of heuristics and

techniques to conduct specific types of analysis. Although the resulting studies

were extensive, I do believe that there is untapped potential in the dataset used. In

particular, as I discussed in the related work of Chapter 2, additional techniques and

data enrichments could have been explored to identify other relevant phenomena in

the malicious file delivery ecosystem. For instance, one could have collected DNS

and WHOIS records for domains in the dataset to identify servers using Fast Flux

and domain generation algorithms (DGAs). Alternatively, web crawlers may have

been used to identify sites hosting exploit kits. With that being said, these additional

measurements could be carried out in future works.

Robustness and relevance. One may question the robustness of the measurements

presented in this thesis, both by way of the methodologies adopted and the age of the

dataset used. It is important to reiterate that the data used and represented as graph

networks only serve as proxies to server infrastructure and download activities in the

real world. I have already discussed several limitations to the measurement method-

ologies, including external validity issues through the use of Symantec security data

(Section 4.4.2), lack of ground truth and the effects of false positives (Sections 4.4.2

and 5.5.2), and difficulties in identifying file binaries that undergo polymorphism

(Section 4.4.2). In my opinion, however, the most significant challenge to this kind

of research relates to the technical issues that can arise when handling Big Data,

particularly in identifying erroneous data and false positive results. In my experi-

ence, this was dealt with by questioning the validity of every finding and devising

thorough tests and “sanity checks” to verify them. A clear example of this was the

numerous experiments conducted to verify the discovery of a massive Giant Com-

ponent in the malicious file delivery ecosystem (Section 4.3.1). Taking into account

the extensive tests that were applied in this work, the numerous reviews of other

academicians, and how the key findings are supported by other studies, I consider
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the results presented in this thesis to be empirically robust. Nonetheless, for studies

of this kind, one cannot completely rule out the possibility that some results may be

slightly misleading or misinterpreted, simply because it is impractical to consider

all confounding edge cases.

On the temporal robustness of these findings, I believe that the lessons learned

from these measurement studies are still highly relevant today. This is despite the

fact that the dataset was collected in 2015–16. This is because, firstly, as recent

research and industry reports indicate, modern-day malware are still using the same

delivery and evasive techniques described in these studies. Secondly, it is not un-

common for malware operations to last several years. For instance, some oper-

ations, such as Dorkbot or Dyre, were first discovered in the early 2010s, while

modern-day malware, such as Emotet2, also operated during the period of 2015–

2016. In fact, some modern-day malware are evolved versions of the malware stud-

ied in this thesis (e.g., TrickBot3 evolved from Dyre). Finally, a number of my

findings re-echo what has been discovered in past studies that were carried out in

different contexts. As such, these findings provide additional evidence to reinforce

existing theories on malware delivery and the efficacy of takedown operations.

Interdisciplinary approach. In this thesis, I adopted an interdisciplinary approach

to studying malware delivery. Specifically, I used a combination of systems secu-

rity domain knowledge, data analytics techniques, and theories and concepts from

environmental criminology to explain certain cybercrime phenomena. The clearest

manifestation of this interdisciplinary approach came in the disruption portion of

this thesis where I surveyed the cybercrime literature from the information security

and environmental criminology perspectives. This study uncovered numerous par-

allels between the two fields, and provided guidance on how the security community

could branch out with a unified approach to cybersecurity and cybercrime preven-

tion. I began this process by demonstrating how frameworks from environmental

criminology could be used to generate new cybercrime countermeasures with some

proof-of-concept propositions. Going further, using domain knowledge from com-

2
https://www.malwarebytes.com/emotet/

3
https://securityintelligence.com/news/trickbot-malware-resurrects-the-ghost-of-dyre/
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puter science and geography, I proposed a new concept of cyberplace to establish

situational contexts in cyberspace. Besides these contributions benefitting cyberse-

curity practitioners and adding to the academic literature, I hope other researchers,

computer scientists, and engineers will be encouraged to adopt a similar, interdisci-

plinary mindset towards security research. Finally, as I noted when discussing the

related work in Section 2.7, other studies using interdisciplinary approaches (partic-

ularly environmental criminology) to address cybersecurity challenges have come

forth in the last few years [118, 59, 159]. I expect this trend to grow in the coming

years, especially in relation to sociotechnical systems security.

7.3 Concluding Remarks
The problem of malware delivery is an interesting yet complex one – one which

has no doubt been exacerbated by the rise of cybercrime networks and dark markets

in recent years. In this thesis, I approached this problem from a high-level, data

analytics perspective. Primarily, this was by virtue of a research partnership with

Symantec from which I benefitted. In the latter stages, however, I delved into re-

search with a more interdisciplinary outlook, both in relation to mitigating botnets

and malware delivery operations, and mitigating other cybercrimes more generally.

This latter research direction was borne both out of necessity and serendipity. Of

necessity because, as I had discovered through my measurement studies, malware

and PUP delivery networks were incredibly intertwined with various, benign web

services, such as well-known CDNs and cloud hosting services – services which

would require different remediation strategies to malicious ones. And, of serendip-

ity in that the opportunity and timing to engage in this interdisciplinary research was

purely fortuitous – thankfully, I was in the right place at the right time! With that

being said, in concluding, I feel inclined to share some realisations I have acquired

through this doctoral journey:

People and Perspective in Cybersecurity

From my understanding, multidisciplinarity refers to people from different disci-

plines coming together to solve a common problem, while interdisciplinarity refers
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to the integration and synthesis of knowledge and methods from different disci-

plines. In recent years, the need for different people, perspectives, knowledge do-

mains, and skill-sets in cybersecurity and cybercrime prevention has been argued

so often that it has almost become cliché. However, with my work in malware de-

livery, and with the work of the wider security community that I have come across

over the past few years, I have only come to a fuller understanding and appreciation

of this perspective. To me, both multidisciplinarity and interdisciplinarity will be

key components to the future success of cybersecurity and cybercrime prevention.

Take the analysis of malware delivery, for example:

Undeniably, low-level analysis of malicious file binaries will always be a cor-

nerstone of malware delivery research: their characteristics, how they interact with

different software and hardware configurations, how they exploit system vulnera-

bilities, and how they behave, communicate, and spread on local filesystems, over

computer networks, and from external web servers. These phenomena are all perti-

nent to our understanding of malware delivery and to our ability to devise effective

countermeasures against them. Already, one can see the need for a diversity of skill-

sets for this level of analysis and intervention: knowledge and expertise in computer

architectures, network protocols, reverse-engineering, provisioning sandboxes and

analysis infrastructure, software and security engineering, detection systems, and

so on.

However, the problem of malware delivery is not just isolated to individual

computers and networks. Rather, it is a global one, spanning service providers

and end-users across the entirety of the Internet, and culminating in a variegated

and complex ecosystem of malicious distributors, payloads, and controlling actors.

At this stage, high-level and large-scale studies (such as those conducted herein)

become necessary to understand and mitigate malware delivery at a coarser granu-

larity. As such, we begin to see the need for another group of skill-sets: primarily

data analytics and data science, along with the related fields of statistics, machine

learning, and big data.
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But, going further, malware delivery is not driven by technical expertise alone

– it is a criminal industry that is also driven by money, politics, and power, among

other motivations. Cybercriminals communicate and network with each other. Dark

markets allow criminal services to be exchanged and different parts of a criminal

operation to be outsourced. Cybercriminals, being human, constantly make deci-

sions to design, optimise, or alter their operations in light of new information and

stimuli, such as a learned experience, or a LEA takedown attempt. This brings

yet another dimension to an already complicated problem. Now, one must also

consider the socioeconomic, psychological, legal, and regulatory ramifications of

malware delivery activities, as well as the types of countermeasures that could be

used to disrupt them.

Clearly, malware delivery – just one cybersecurity problem of many – cannot

be solved by any single discipline. In almost perfect symmetry, malware delivery

itself is not perpetrated by any one type of malicious actor or activity, but an organ-

ised conglomerate. Therefore, dealing with the problem of malware delivery more

effectively will require the cooperation and coordination of different groups and

different skill-sets: low-level and high-level computer analysts working together to

derive more effective features to heuristically detect botnet activity and find better

intervention points in malicious operations; high-level computer scientists working

with crime scientists to derive more comprehensive analytical frameworks and mit-

igation strategies against entire malware operations and malicious delivery ecosys-

tems; low-level computer scientists working with other disciplines to generate new

approaches to systems security; and other stakeholders, such as Internet service

providers, tech companies, security companies, law enforcement, and public bod-

ies, taking a shared responsibility towards cybersecurity and cybercrime prevention.

Concluding, I hope the greatest contribution of this thesis is the increased under-

standing and collaboration of different researchers, practitioners, stakeholders, in-

stitutions, and communities in the fight to ensure cybersecurity is achieved.
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Chapter 8

Extensions

In this final chapter, I outline my recommendations for future research based on the

work conducted in this thesis.

8.1 Measuring the Malicious File Delivery Ecosystem

on the Web
This study uncovered the structural characteristics of the malicious file delivery

ecosystem on the Web, some high-level differences between malware and PUP de-

livery infrastructures, and aggregate retention rates and lifespans of delivery infras-

tructures. However, in the same vein, this study also unearthed additional interest-

ing questions to be answered and challenges to be overcome regarding measuring

malicious file delivery networks:

Structures of malicious file delivery networks. Interesting phenomena were iden-

tified at several points in the study, particularly when analysing the structure of the

PUP Ecosystem in comparison with that of the Malware Ecosystem. In fact, towards

the end of the snapshot analysis, a question was again raised on why the GC (PUP

Ecosystem) exists. Because of data limitations, I could go no further than to prof-

fer hypotheses for each observation (e.g., possibly higher CDN usage and/or use

of Fast Flux in PUP Ecosystem, possibly higher use of evasive delivery techniques

and/or compromised sites hosting exploit kits in Malware Ecosystem). As such,

it may be worth investigating the structures of these ecosystems more deeply and

testing the competing hypotheses generated in the first study. This extension could



be approached in a number of ways. One way could be to establish the types of

web services present in each ecosystem through the use of additional domain meta-

data (e.g., WHOIS records, site traffic statistics, search engine data). Alternatively,

or in complement, one could identify hidden connections between web services by

querying historical site archives1 for sites observed in this dataset, and matching

the hyperlink destinations on each site with the sites observed in the same dataset.

From a technical standpoint, it may be worthwhile exploring how one could incor-

porate Fast Flux and DGA detection into the proposed methodology (as discussed

in Sections 2.3.1 and 2.3.2).

Tracking delivery infrastructures. A major part of this study involved tracking

delivery infrastructures in time. The tracking technique devised for this purpose

simply matched infrastructures between observation periods on a one-to-one and

“best-effort” basis. Although this technique was sufficient for the purposes of this

study (i.e., estimating the aggregate dynamics and lifespans of delivery infrastruc-

tures), more sophisticated tracking techniques would be needed to answer more

pointed research questions. For instance, to consider and analyse more complex

dynamics between delivery networks, one may consider the possibility of delivery

networks splitting or coalescing over time, or groups of leaf nodes (binaries) that

move from one upstream provider to another in lockstep. There are a number of

other relevant topics that were not explored in this study that could be tackled in

future works. For instance, one could extend this methodology to explore botnet

activity detection based on the growth patterns of delivery networks. It may also be

interesting to identify the business relationships that exist between different brands

of unwanted software and upstream delivery networks, and how they change over

time. With that being said, the methodology I devised for the second study in Chap-

ter 5 could also be used to address such research questions.

1The Wayback Machine is a popular Internet archive: https://archive.org/web/
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8.2 Tracing the Evolution of Malware Delivery Op-

erations Targeted for Takedown
This study was scoped to measure the evolution of three malware delivery opera-

tions using network dynamic and downloader dynamic metrics. However, there are

many opportunities to extend this methodology and conduct further research:

Ecosystem dynamics. This methodology helped us identify instances of a malware

operation moving its operations from one set of infrastructures to another. This is

an example of spatial displacement – a type of displacement from environmental

criminology. However, following such a scenario, the methodology used could not

allow us to determine the possibility of a second malware delivery operation taking

the place of the first (i.e., making use of the upstream infrastructure or dropper net-

work it abandoned). This would be an example of offender displacement – another

behavioural phenomenon from environmental criminology. As such, extending the

tracking and analysis methodology to detect such ecosystem dynamics around a

given malware operation could be a worthwhile follow-up.

Causality analysis. Another important extension to this work is using causal infer-

ence to assessg the effects of takedowns on malware delivery operations. This is an

interesting research direction because one could assess a number of causal relation-

ships. For instance, considering the efficacy of takedowns on the targeted malware

operation, one could assess the causal effect of takedowns on each aspect of a given

malware operation (aggregate network dynamics, use of evasive techniques, down-

load activity, presence of polymorphic malware). On the other hand, considering

the shared infrastructure and business relationships between many different actors

in the malicious file delivery ecosystem, one could also assess the causal effects of

a takedown on other malware (and software) delivery operations that were not the

intended targets (i.e., the side-effects of takedown operations).

Large-scale analysis of software delivery dynamics. Finally, as I alluded to in

Section 5.3, it is possible to extend the methodology used in this study to analyse

the activities of software delivery operations at scale (malware, PUP, benign). This

could be helpful in investigating behaviours that are common or disparate between
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unwanted software versus benignware. Likewise, one could further investigate the

business relationships that exist between the myriad of software classes and fami-

lies, and potentially identify software families that must be prioritised for interven-

tion.

8.3 Bridging Information Security and Environmen-

tal Criminology Research to Better Mitigate Cy-

bercrime
This study showed how the fields of information security and environmental crim-

inology could work together to form a new, complementary research direction to-

wards mitigating cybercrime. Furthermore, the contributions of this work serve as

a platform for researchers and practitioners to test, assess, and refine the proposed

mitigations. As such, I make the following recommendations for future work:

Evidence-based cybersecurity. Further research could be applied in assessing the

proposed mitigations from this study, as well as new ones generated from the sug-

gested crime prevention frameworks. In short, I recommend that the research com-

munity begins to apply the ideas of environmental criminology to generating more

extensive cybercrime mitigations, applying them, and assessing them. This is of

particular importance to security designers of complex systems (such as sociotech-

nical ones), who may often experience lapses in the security design process due to

the many variables in such systems.

Ontology of cyberplace. The proposed concept of cyberplace is only the first stage

in this research area – there is still a need to review and refine it. As I noted in

the study, there is a particular need to investigate the ontology of cyberplace. That

is, an investigation of how cyberplace relates with the real-world and cyber enti-

ties of space-time, place, human actors, machine actors (programs), data, computer

systems and networks, etc. As stated, a clear understanding of cyberplace is a nec-

essary precursor to understanding how real-world concepts and theories relating to

physical places (e.g., “broken windows” theory) apply in cyberspace.

192



Appendix A

Additional Measurements of the

Malicious File Delivery Ecosystem on

the Web

A.1 Lifespans of Delivery Infrastructures

In addition to computing the lifespans of delivery infrastructures tracked from Oc-

tober 1st, 2015 (Figure 4.13), the presence of the nodes within delivery infrastruc-

tures over a year was also measured. Figure A.1 shows a cumulative distribution

frequency plot of the presence of different infrastructure nodes. This shows that,

besides infrastructures that are observed one year on from October 1st, 2015, an
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Figure A.1: Cumulative distribution frequency plot of the presence of different infrastruc-
ture nodes.



even smaller proportion of nodes (< 3%) are stable for a continuous period of 48

weeks or more.
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